1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
//! This crate contains abstractions to interact with hardware clocks.

#![no_std]

mod dummy;

use core::{fmt, ops};
use crossbeam_utils::atomic::AtomicCell;

pub use core::time::Duration;

const FEMTOS_TO_NANOS: u128 = 1_000_000;

static EARLY_SLEEP_FUNCTION: AtomicCell<fn(Duration)> = AtomicCell::new(dummy::early_sleep);
static EARLY_SLEEPER_PERIOD: AtomicCell<Period> = AtomicCell::new(Period::MAX);

static MONOTONIC_NOW_FUNCTION: AtomicCell<fn() -> Instant> = AtomicCell::new(dummy::monotonic_now);
static MONOTONIC_PERIOD: AtomicCell<Period> = AtomicCell::new(Period::MAX);

static WALL_TIME_NOW_FUNCTION: AtomicCell<fn() -> Duration> = AtomicCell::new(dummy::wall_time_now);
static WALL_TIME_PERIOD: AtomicCell<Period> = AtomicCell::new(Period::MAX);

/// A measurement of a monotonically nondecreasing clock.
///
/// The inner value usually represents the internal counter value but the type
/// is intentionally opaque and only useful with [`Duration`].
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Instant {
    counter: u64,
}

impl Instant {
    pub const ZERO: Self = Self { counter: 0 };

    pub const MAX: Self = Self { counter: u64::MAX };

    pub fn new(counter: u64) -> Self {
        Self { counter }
    }

    pub fn now() -> Self {
        now::<Monotonic>()
    }

    pub fn elapsed(&self) -> Duration {
        Self::now().duration_since(*self)
    }

    /// Returns the amount of time elapsed from another instant to this one, or
    /// zero duration if that instant is later than this one.
    pub fn duration_since(&self, earlier: Self) -> Duration {
        self.checked_duration_since(earlier).unwrap_or_default()
    }

    pub fn checked_duration_since(&self, earlier: Self) -> Option<Duration> {
        let instant = Instant {
            counter: self.counter.checked_sub(earlier.counter)?,
        };
        let femtos = u128::from(instant.counter) * u128::from(MONOTONIC_PERIOD.load());
        Some(Duration::from_nanos((femtos / FEMTOS_TO_NANOS) as u64))
    }
}

impl Default for Instant {
    fn default() -> Self {
        Self::ZERO
    }
}

impl ops::Add<Duration> for Instant {
    type Output = Self;

    fn add(self, rhs: Duration) -> Self::Output {
        let femtos = rhs.as_nanos() * FEMTOS_TO_NANOS;
        let ticks = (femtos / u128::from(MONOTONIC_PERIOD.load())) as u64;
        Self {
            counter: self
                .counter
                .checked_add(ticks)
                .expect("overflow when adding duration to instant"),
        }
    }
}

impl ops::AddAssign<Duration> for Instant {
    fn add_assign(&mut self, rhs: Duration) {
        *self = *self + rhs;
    }
}

impl ops::Sub<Duration> for Instant {
    type Output = Self;

    fn sub(self, rhs: Duration) -> Self::Output {
        let femtos = rhs.as_nanos() * FEMTOS_TO_NANOS;
        let ticks = (femtos / u128::from(MONOTONIC_PERIOD.load())) as u64;
        Self {
            counter: self
                .counter
                .checked_sub(ticks)
                .expect("overflow when subtracting duration from instant"),
        }
    }
}

impl ops::Sub<Instant> for Instant {
    type Output = Duration;

    fn sub(self, rhs: Instant) -> Self::Output {
        self.duration_since(rhs)
    }
}

impl ops::SubAssign<Duration> for Instant {
    fn sub_assign(&mut self, rhs: Duration) {
        *self = *self - rhs;
    }
}

/// A clock period, measured in femtoseconds.
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct Period(u64);

impl Period {
    const MAX: Self = Self(u64::MAX);

    /// Creates a new period with the specified femtoseconds.
    pub fn new(period: u64) -> Self {
        Self(period)
    }
}

impl From<Period> for u64 {
    /// Returns the period in femtoseconds.
    fn from(f: Period) -> Self {
        f.0
    }
}

impl From<Period> for u128 {
    /// Returns the period in femtoseconds.
    fn from(f: Period) -> Self {
        f.0.into()
    }
}

impl From<u64> for Period {
    /// Creates a new period with the specified femtoseconds.
    fn from(period: u64) -> Self {
        Self(period)
    }
}

impl fmt::Display for Period {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{} fs", self.0)
    }
}

/// Register the clock source that can be used to sleep when interrupts are
/// disabled.
///
/// The provided early sleeper will overwrite the current early sleeper only if
/// `period` is smaller than that of the current early sleeper.
///
/// Returns whether the early sleeper was overwritten.
pub fn register_early_sleeper<T>(period: Period) -> bool
where
    T: EarlySleeper,
{
    if EARLY_SLEEPER_PERIOD
        .fetch_update(|old_period| {
            if period < old_period {
                Some(period)
            } else {
                None
            }
        })
        .is_ok()
    {
        EARLY_SLEEP_FUNCTION.store(T::sleep);
        true
    } else {
        false
    }
}

/// Wait for the given `duration`.
///
/// This function spins the current task rather than sleeping it and so, when
/// possible, the `sleep` crate should be used. However, unlike the `sleep`
/// crate, this function doesn't rely on interrupts.
///
/// This function must not be called prior to registering an early sleeper using
/// [`register_early_sleeper`].
pub fn early_sleep(duration: Duration) {
    let f = EARLY_SLEEP_FUNCTION.load();
    f(duration)
}

/// Register a clock source.
///
/// The provided clock source will overwrite the current clock source only if
/// `period` is smaller than that of the current clock source.
///
/// Returns whether the clock source was overwritten.
pub fn register_clock_source<T>(period: Period) -> bool
where
    T: ClockSource,
{
    let period_atomic = T::ClockType::period_atomic();
    if period_atomic
        .fetch_update(|old_period| {
            if period < old_period {
                Some(period)
            } else {
                None
            }
        })
        .is_ok()
    {
        let now_fn = T::ClockType::now_fn();
        now_fn.store(T::now);

        true
    } else {
        false
    }
}

/// Returns the current time.
///
/// Monotonic clocks return an [`Instant`] whereas wall time clocks return a
/// [`Duration`] signifying the time since 12:00am January 1st 1970 (i.e. Unix
/// time).
///
/// This function must not be called prior to registering a clock source of the
/// specified type using [`register_clock_source`].
pub fn now<T>() -> T::Unit
where
    T: ClockType,
{
    let f = T::now_fn().load();
    f()
}

/// A clock source.
pub trait ClockSource {
    /// The type of clock (either [`Monotonic`] or [`WallTime`]).
    type ClockType: ClockType;

    /// The current time according to the clock.
    ///
    /// Monotonic clocks return an [`Instant`] whereas wall time clocks return a
    /// [`Duration`] signifying the time since 12:00am January 1st 1970 (i.e.
    /// Unix time).
    fn now() -> <Self::ClockType as ClockType>::Unit;
}

/// A hardware clock that can sleep without relying on interrupts.
pub trait EarlySleeper: ClockSource<ClockType = Monotonic> {
    /// Wait for the given `duration`.
    ///
    /// This function spins the current task rather than sleeping it and so,
    /// when possible, the `sleep` crate should be used.
    ///
    /// However, unlike the `sleep` crate, this function doesn't rely on
    /// interrupts, and can be used prior to the scheduler being initiated.
    ///
    /// # Note to Implementors
    ///
    /// The default implementation of this function uses [`ClockSource::now`] -
    /// it can only be used if [`ClockSource::now`] doesn't rely on
    /// interrupts.
    fn sleep(duration: Duration) {
        let start = Self::now();
        while Self::now() < start + duration {}
    }
}

/// Either a [`Monotonic`] or [`WallTime`] clock.
///
/// This trait is sealed and so cannot be implemented outside of this crate.
pub trait ClockType: private::Sealed {
    /// The type returned by the [`now`] function.
    type Unit: 'static;

    #[doc(hidden)]
    fn now_fn() -> &'static AtomicCell<fn() -> Self::Unit>;
    #[doc(hidden)]
    fn period_atomic() -> &'static AtomicCell<Period>;
}

pub struct Monotonic;

impl private::Sealed for Monotonic {}

impl ClockType for Monotonic {
    type Unit = Instant;

    fn now_fn() -> &'static AtomicCell<fn() -> Self::Unit> {
        &MONOTONIC_NOW_FUNCTION
    }

    fn period_atomic() -> &'static AtomicCell<Period> {
        &MONOTONIC_PERIOD
    }
}

pub struct WallTime;

impl private::Sealed for WallTime {}

impl ClockType for WallTime {
    type Unit = Duration;

    fn now_fn() -> &'static AtomicCell<fn() -> Self::Unit> {
        &WALL_TIME_NOW_FUNCTION
    }

    fn period_atomic() -> &'static AtomicCell<Period> {
        &WALL_TIME_PERIOD
    }
}

mod private {
    /// This trait is a supertrait of [`Clocktype`](super::ClockType).
    ///
    /// Since it's in a private module, it can't be implemented by types outside
    /// this crate and thus neither can [`Clocktype`](super::ClockType).
    pub trait Sealed {}
}