1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
//! Provides a `thread_local!()` macro, a helper to instantiate lazily-initialized
//! thread-local storage (TLS) variables.
//!
//! The primary difference between using this crate's `thread_local!()` macro
//! and directly using the `#[thread_local]` attribute is that `static` items
//! tagged with the `#[thread_local]` attribute will *never* be dropped,
//! just like all other `static`s.
//!
//! However, static items defined in a `thread_local!()` macro block will be
//! destructed (e.g., dropped, destroyed) when that task exits.
//!
//! # Rust std-based implementation notes
//! The code in this crate is adapted from [this version of the `thread_local!()` macro]
//! from the Rust standard library.
//! The main design has been left unchanged, but we have removed most of the configuration blocks
//! for complex platform-specific or OS-specific behavior.
//! Because Theseus supports the `#[thread_local]` attribute, we can directly use the
//! TLS "fast path", which the Rust standard library refers to as the "FastLocalInnerKey".
//!
//! ## Unsafety
//! We could probably could remove most of the unsafe code from this implementation,
//! because we don't have to account for the various raw platform-specific interfaces
//! or using raw libc types like the original Rust std implementation does.
//! However, I have chosen to leave the code as close as possible to the original
//! Rust std implementation in order to make updates as easy as possible,
//! for if and when the Rust std version changes and we wish to track/merge in those changes.
//!
//! [this version of the `thread_local!()` macro]: https://github.com/rust-lang/rust/blob/3f14f4b3cec811017079564e16a92a1dc9870f41/library/std/src/thread/local.rs
#![no_std]
#![feature(thread_local)]
#![allow(internal_features)]
#![feature(allow_internal_unstable)]
// The code from Rust std uses unsafe blocks within unsafe functions,
// so we preserve that here (for now).
#![allow(unused_unsafe)]
extern crate alloc;
use core::cell::RefCell;
/// The set of TLS objects that have been initialized by a task
/// and need a destructor to be run after that task exits.
///
/// We store these TLS destructors in a raw TLS object itself
/// which is okay as long as this object itself doesn't require a destructor.
/// We achieve this condition in two parts:
/// 1. We statically assert that the `TlsObjectDestructor` doesn't implement [`Drop`],
/// which makes sense because it only holds raw pointer values and function pointers.
/// 2. The actual `Vec` is drained upon task exit by the task cleanup functions
/// in the `spawn` crate`, ensuring that there is no `Vec` memory itself
/// to actually be deallocated, as the contents of this `Vec` have been cleared.
///
/// Note that this will always be safe even if the two conditions **aren't** met,
/// because the only thing that will happen there is a memory leak.
#[thread_local]
static TLS_DESTRUCTORS: RefCell<Vec<TlsObjectDestructor>> = RefCell::new(Vec::new());
/// A TLS data object that has been initialized and requires a destructor to be run.
/// The destructor should be invoked when the task containing this `TlsObjectDestructor` exits.
#[doc(hidden)]
pub struct TlsObjectDestructor {
/// The raw pointer to the object that needs to be dropped.
pub object_ptr: *mut u8,
/// The destructor function that should be invoked with `object_ptr` as its only parameter.
/// The function itself must be an unsafe one, as it dereferences raw pointers.
pub dtor: unsafe extern "C" fn(*mut u8),
}
// See the above [`TLS_DESTRUCTORS`] docs for why this is necessary.
const _: () = assert!(!core::mem::needs_drop::<TlsObjectDestructor>());
/// Takes ownership of the list of [`TlsObjectDestructor`]s
/// for TLS objects that have been initialized in this current task's TLS area.
///
/// This is only intended to be used by the task cleanup functions
/// after the current task has exited.
#[doc(hidden)]
pub fn take_current_tls_destructors() -> Vec<TlsObjectDestructor> {
TLS_DESTRUCTORS.take()
}
/// Adds the given destructor callback to the current task's list of
/// TLS destructors that should be run when that task exits.
///
/// # Arguments
/// * `a`: the pointer to the object that will be destructed.
/// * `dtor`: the function that should be invoked to destruct the object pointed to by `a`.
/// When the current task exits, this function will be invoked with `a`
/// as its only argument, at which point the `dtor` function should drop `a`.
///
/// Currently the only value of `dtor` that is used is a type-specific monomorphized
/// version of the above [`fast::destroy_value()`] function.
fn register_dtor(object_ptr: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
TLS_DESTRUCTORS.borrow_mut().push(TlsObjectDestructor { object_ptr, dtor });
}
//////////////////////////////////////////////////////////////////////////////////
// Everything below here is a modified version of thread_local!() from Rust std //
//////////////////////////////////////////////////////////////////////////////////
use core::cell::{Cell, UnsafeCell};
use core::fmt;
#[doc(hidden)]
pub use core::option;
use core::mem;
use core::hint;
use alloc::vec::Vec;
/// A thread-local storage key which owns its contents.
///
/// This TLS object is instantiated the [`thread_local!`] macro and offers
/// one primary method to access it: the [`with`] method.
///
/// The [`with`] method yields a reference to the contained value which cannot be
/// sent across threads or escape the given closure.
///
/// # Initialization and Destruction
///
/// Initialization is lazily performed dynamically on the first call to [`with`]
/// within a thread (`Task` in Theseus), and values that implement [`Drop`] get destructed
/// when a thread exits.
///
/// A `LocalKey`'s initializer cannot recursively depend on itself, and using
/// a `LocalKey` in this way will cause the initializer to infinitely recurse
/// on the first call to `with`.
///
/// # Examples
///
/// ```ignore
/// use core::cell::RefCell;
/// use spawn::new_task_builder;
///
/// thread_local!(static FOO: RefCell<u32> = RefCell::new(1));
///
/// FOO.with(|f| {
/// assert_eq!(*f.borrow(), 1);
/// *f.borrow_mut() = 2;
/// });
///
/// // each thread starts out with the initial value of 1
/// let t = new_task_builder(
/// move |_: ()| {
/// FOO.with(|f| {
/// assert_eq!(*f.borrow(), 1);
/// *f.borrow_mut() = 3;
/// });
/// },
/// (), // empty arg
/// ).spawn().unwrap();
///
/// // wait for the new task to exit
/// t.join();
///
/// // we retain our original value of 2 despite the child thread
/// FOO.with(|f| {
/// assert_eq!(*f.borrow(), 2);
/// });
/// ```
///
/// [`with`]: LocalKey::with
pub struct LocalKey<T: 'static> {
// This outer `LocalKey<T>` type is what's going to be stored in statics,
// but actual data inside will be tagged with #[thread_local].
// It's not valid for a true static to reference a #[thread_local] static,
// so we get around that by exposing an accessor through a layer of function
// indirection (this thunk).
//
// Note that the thunk is itself unsafe because the returned lifetime of the
// slot where data lives, `'static`, is not actually valid. The lifetime
// here is actually slightly shorter than the currently running thread!
//
// Although this is an extra layer of indirection, it should in theory be
// trivially devirtualizable by LLVM because the value of `inner` never
// changes and the constant should be readonly within a crate. This mainly
// only runs into problems when TLS statics are exported across crates.
inner: unsafe fn() -> Option<&'static T>,
}
impl<T: 'static> fmt::Debug for LocalKey<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("LocalKey").finish_non_exhaustive()
}
}
/// Declare a new thread local storage key of type [`LocalKey`].
///
/// # Syntax
///
/// The macro wraps any number of static declarations and makes them thread local.
/// Publicity and attributes for each static are allowed. Example:
///
/// ```
/// use core::cell::RefCell;
/// thread_local! {
/// pub static FOO: RefCell<u32> = RefCell::new(1);
///
/// #[allow(unused)]
/// static BAR: RefCell<f32> = RefCell::new(1.0);
/// }
/// # fn main() {}
/// ```
///
/// See [`LocalKey`] documentation for more information.
#[macro_export]
macro_rules! thread_local {
// empty (base case for the recursion)
() => {};
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }; $($rest:tt)*) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, const $init);
$crate::thread_local!($($rest)*);
);
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, const $init);
);
// process multiple declarations
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr; $($rest:tt)*) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, $init);
$crate::thread_local!($($rest)*);
);
// handle a single declaration
($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr) => (
$crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, $init);
);
}
#[doc(hidden)]
#[macro_export]
// This allows the `thread_local!()` macro to be used in a foreign crate
// without that crate having to specify the `#![feature(thread_local)]`.
// This is also done in the Rust standard library, so it's completely fine to do.
#[allow_internal_unstable(thread_local)]
macro_rules! __thread_local_inner {
// used to generate the `LocalKey` value for const-initialized thread locals
(@key $t:ty, const $init:expr) => {{
#[inline]
unsafe fn __getit() -> $crate::option::Option<&'static $t> {
// Theseus supports `#[thread_local]`, so use it directly.
{
// If a dtor isn't needed we can do something "very raw" and
// just get going.
if !$crate::mem::needs_drop::<$t>() {
#[thread_local]
static mut VAL: $t = $init;
unsafe {
return Some(&VAL)
}
}
#[thread_local]
static mut VAL: $t = $init;
// 0 == dtor not registered
// 1 == dtor registered, dtor not run
// 2 == dtor registered and is running or has run
#[thread_local]
static mut STATE: u8 = 0;
unsafe extern "C" fn destroy(ptr: *mut u8) {
let ptr = ptr as *mut $t;
unsafe {
assert_eq!(STATE, 1);
STATE = 2;
$crate::ptr::drop_in_place(ptr);
}
}
unsafe {
match STATE {
// 0 == we haven't registered a destructor, so do
// so now.
0 => {
$crate::fast::Key::<$t>::register_dtor(
$crate::ptr::addr_of_mut!(VAL) as *mut u8,
destroy,
);
STATE = 1;
Some(&VAL)
}
// 1 == the destructor is registered and the value
// is valid, so return the pointer.
1 => Some(&VAL),
// otherwise the destructor has already run, so we
// can't give access.
_ => None,
}
}
}
}
unsafe {
$crate::LocalKey::new(__getit)
}
}};
// used to generate the `LocalKey` value for `thread_local!`
(@key $t:ty, $init:expr) => {
{
#[inline]
fn __init() -> $t { $init }
#[inline]
unsafe fn __getit() -> $crate::option::Option<&'static $t> {
#[thread_local]
static __KEY: $crate::fast::Key<$t> =
$crate::fast::Key::new();
// FIXME: remove the #[allow(...)] marker when macros don't
// raise warning for missing/extraneous unsafe blocks anymore.
// See https://github.com/rust-lang/rust/issues/74838.
#[allow(unused_unsafe)]
unsafe { __KEY.get(__init) }
}
unsafe {
$crate::LocalKey::new(__getit)
}
}
};
($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
$(#[$attr])* $vis const $name: $crate::LocalKey<$t> =
$crate::__thread_local_inner!(@key $t, $($init)*);
}
}
/// An error returned by [`LocalKey::try_with`](struct.LocalKey.html#method.try_with).
#[non_exhaustive]
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct AccessError;
impl fmt::Debug for AccessError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AccessError").finish()
}
}
impl fmt::Display for AccessError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt("already destroyed", f)
}
}
// The `Error` trait is not in the core library yet, so we can't use it.
// impl Error for AccessError {}
impl<T: 'static> LocalKey<T> {
#[doc(hidden)]
pub const unsafe fn new(inner: unsafe fn() -> Option<&'static T>) -> LocalKey<T> {
LocalKey { inner }
}
/// Acquires a reference to the value in this TLS key.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet.
///
/// # Panics
///
/// This function will `panic!()` if the key currently has its
/// destructor running, and it **may** panic if the destructor has
/// previously been run for this thread.
pub fn with<F, R>(&'static self, f: F) -> R
where
F: FnOnce(&T) -> R,
{
self.try_with(f).expect(
"cannot access a Thread Local Storage value \
during or after destruction",
)
}
/// Acquires a reference to the value in this TLS key.
///
/// This will lazily initialize the value if this thread has not referenced
/// this key yet. If the key has been destroyed (which may happen if this is called
/// in a destructor), this function will return an [`AccessError`].
///
/// # Panics
///
/// This function will still `panic!()` if the key is uninitialized and the
/// key's initializer panics.
#[inline]
pub fn try_with<F, R>(&'static self, f: F) -> Result<R, AccessError>
where
F: FnOnce(&T) -> R,
{
unsafe {
let thread_local = (self.inner)().ok_or(AccessError)?;
Ok(f(thread_local))
}
}
}
mod lazy {
use crate::UnsafeCell;
use crate::hint;
use crate::mem;
pub struct LazyKeyInner<T> {
inner: UnsafeCell<Option<T>>,
}
impl<T> LazyKeyInner<T> {
pub const fn new() -> LazyKeyInner<T> {
LazyKeyInner { inner: UnsafeCell::new(None) }
}
pub unsafe fn get(&self) -> Option<&'static T> {
// SAFETY: The caller must ensure no reference is ever handed out to
// the inner cell nor mutable reference to the Option<T> inside said
// cell. This make it safe to hand a reference, though the lifetime
// of 'static is itself unsafe, making the get method unsafe.
unsafe { (*self.inner.get()).as_ref() }
}
/// The caller must ensure that no reference is active: this method
/// needs unique access.
pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
// Execute the initialization up front, *then* move it into our slot,
// just in case initialization fails.
let value = init();
let ptr = self.inner.get();
// SAFETY:
//
// note that this can in theory just be `*ptr = Some(value)`, but due to
// the compiler will currently codegen that pattern with something like:
//
// ptr::drop_in_place(ptr)
// ptr::write(ptr, Some(value))
//
// Due to this pattern it's possible for the destructor of the value in
// `ptr` (e.g., if this is being recursively initialized) to re-access
// TLS, in which case there will be a `&` and `&mut` pointer to the same
// value (an aliasing violation). To avoid setting the "I'm running a
// destructor" flag we just use `mem::replace` which should sequence the
// operations a little differently and make this safe to call.
//
// The precondition also ensures that we are the only one accessing
// `self` at the moment so replacing is fine.
unsafe {
let _ = mem::replace(&mut *ptr, Some(value));
}
// SAFETY: With the call to `mem::replace` it is guaranteed there is
// a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
// will never be reached.
unsafe {
// After storing `Some` we want to get a reference to the contents of
// what we just stored. While we could use `unwrap` here and it should
// always work it empirically doesn't seem to always get optimized away,
// which means that using something like `try_with` can pull in
// panicking code and cause a large size bloat.
match *ptr {
Some(ref x) => x,
None => hint::unreachable_unchecked(),
}
}
}
/// The other methods hand out references while taking &self.
/// As such, callers of this method must ensure no `&` and `&mut` are
/// available and used at the same time.
#[allow(unused)]
pub unsafe fn take(&mut self) -> Option<T> {
// SAFETY: See doc comment for this method.
unsafe { (*self.inner.get()).take() }
}
}
}
#[doc(hidden)]
pub mod fast {
use super::lazy::LazyKeyInner;
use crate::Cell;
use crate::fmt;
use crate::mem;
use super::register_dtor;
#[derive(Copy, Clone)]
enum DtorState {
Unregistered,
Registered,
RunningOrHasRun,
}
// This data structure has been carefully constructed so that the fast path
// only contains one branch on x86. That optimization is necessary to avoid
// duplicated tls lookups on OSX.
//
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
pub struct Key<T> {
// If `LazyKeyInner::get` returns `None`, that indicates either:
// * The value has never been initialized
// * The value is being recursively initialized
// * The value has already been destroyed or is being destroyed
// To determine which kind of `None`, check `dtor_state`.
//
// This is very optimizer friendly for the fast path - initialized but
// not yet dropped.
inner: LazyKeyInner<T>,
// Metadata to keep track of the state of the destructor. Remember that
// this variable is thread-local, not global.
dtor_state: Cell<DtorState>,
}
impl<T> fmt::Debug for Key<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Key").finish_non_exhaustive()
}
}
impl<T> Key<T> {
pub const fn new() -> Key<T> {
Key { inner: LazyKeyInner::new(), dtor_state: Cell::new(DtorState::Unregistered) }
}
/*
* Theseus Note: I'm not sure why this exists, but I don't think we need it in Theseus.
*
// note that this is just a publically-callable function only for the
// const-initialized form of thread locals, basically a way to call the
// free `register_dtor` function defined elsewhere in libstd.
pub unsafe fn register_dtor(a: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
unsafe {
register_dtor(a, dtor);
}
}
*/
pub unsafe fn get<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See the definitions of `LazyKeyInner::get` and
// `try_initialize` for more informations.
//
// The caller must ensure no mutable references are ever active to
// the inner cell or the inner T when this is called.
// The `try_initialize` is dependant on the passed `init` function
// for this.
unsafe {
match self.inner.get() {
Some(val) => Some(val),
None => self.try_initialize(init),
}
}
}
// `try_initialize` is only called once per fast thread local variable,
// except in corner cases where thread_local dtors reference other
// thread_local's, or it is being recursively initialized.
//
// Macos: Inlining this function can cause two `tlv_get_addr` calls to
// be performed for every call to `Key::get`.
// LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
#[inline(never)]
unsafe fn try_initialize<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
// SAFETY: See comment above (this function doc).
if !mem::needs_drop::<T>() || unsafe { self.try_register_dtor() } {
// SAFETY: See comment above (his function doc).
Some(unsafe { self.inner.initialize(init) })
} else {
None
}
}
// `try_register_dtor` is only called once per fast thread local
// variable, except in corner cases where thread_local dtors reference
// other thread_local's, or it is being recursively initialized.
unsafe fn try_register_dtor(&self) -> bool {
match self.dtor_state.get() {
DtorState::Unregistered => {
// SAFETY: dtor registration happens before initialization.
// Passing `self` as a pointer while using `destroy_value<T>`
// is safe because the function will build a pointer to a
// Key<T>, which is the type of self and so find the correct
// size.
unsafe { register_dtor(self as *const _ as *mut u8, destroy_value::<T>) };
self.dtor_state.set(DtorState::Registered);
true
}
DtorState::Registered => {
// recursively initialized
true
}
DtorState::RunningOrHasRun => false,
}
}
}
unsafe extern "C" fn destroy_value<T>(ptr: *mut u8) {
let ptr = ptr as *mut Key<T>;
// SAFETY:
//
// The pointer `ptr` has been built just above and comes from
// `try_register_dtor` where it is originally a Key<T> coming from `self`,
// making it non-NUL and of the correct type.
//
// Right before we run the user destructor be sure to set the
// `Option<T>` to `None`, and `dtor_state` to `RunningOrHasRun`. This
// causes future calls to `get` to run `try_initialize_drop` again,
// which will now fail, and return `None`.
unsafe {
let value = (*ptr).inner.take();
(*ptr).dtor_state.set(DtorState::RunningOrHasRun);
drop(value);
}
}
}