1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
//! Provides a `thread_local!()` macro, a helper to instantiate lazily-initialized 
//! thread-local storage (TLS) variables.
//! 
//! The primary difference between using this crate's `thread_local!()` macro
//! and directly using the `#[thread_local]` attribute is that `static` items
//! tagged with the `#[thread_local]` attribute will *never* be dropped,
//! just like all other `static`s.
//! 
//! However, static items defined in a `thread_local!()` macro block will be
//! destructed (e.g., dropped, destroyed) when that task exits.
//! 
//! # Rust std-based implementation notes
//! The code in this crate is adapted from [this version of the `thread_local!()` macro]
//! from the Rust standard library.
//! The main design has been left unchanged, but we have removed most of the configuration blocks
//! for complex platform-specific or OS-specific behavior.
//! Because Theseus supports the `#[thread_local]` attribute, we can directly use the 
//! TLS "fast path", which the Rust standard library refers to as the "FastLocalInnerKey".
//! 
//! ## Unsafety
//! We could probably could remove most of the unsafe code from this implementation,
//! because we don't have to account for the various raw platform-specific interfaces 
//! or using raw libc types like the original Rust std implementation does.
//! However, I have chosen to leave the code as close as possible to the original 
//! Rust std implementation in order to make updates as easy as possible,
//! for if and when the Rust std version changes and we wish to track/merge in those changes.
//! 
//! [this version of the `thread_local!()` macro]: https://github.com/rust-lang/rust/blob/3f14f4b3cec811017079564e16a92a1dc9870f41/library/std/src/thread/local.rs

#![no_std]
#![feature(thread_local)]
#![allow(internal_features)]
#![feature(allow_internal_unstable)]

// The code from Rust std uses unsafe blocks within unsafe functions,
// so we preserve that here (for now).
#![allow(unused_unsafe)]

extern crate alloc;

use core::cell::RefCell;

/// The set of TLS objects that have been initialized by a task
/// and need a destructor to be run after that task exits.
///
/// We store these TLS destructors in a raw TLS object itself
/// which is okay as long as this object itself doesn't require a destructor.
/// We achieve this condition in two parts:
/// 1. We statically assert that the `TlsObjectDestructor` doesn't implement [`Drop`],
///    which makes sense because it only holds raw pointer values and function pointers.
/// 2. The actual `Vec` is drained upon task exit by the task cleanup functions
///    in the `spawn` crate`, ensuring that there is no `Vec` memory itself
///    to actually be deallocated, as the contents of this `Vec` have been cleared.
/// 
/// Note that this will always be safe even if the two conditions **aren't** met, 
/// because the only thing that will happen there is a memory leak.
#[thread_local]
static TLS_DESTRUCTORS: RefCell<Vec<TlsObjectDestructor>> = RefCell::new(Vec::new());

/// A TLS data object that has been initialized and requires a destructor to be run.
/// The destructor should be invoked when the task containing this `TlsObjectDestructor` exits.
#[doc(hidden)]
pub struct TlsObjectDestructor {
    /// The raw pointer to the object that needs to be dropped.
    pub object_ptr: *mut u8,
    /// The destructor function that should be invoked with `object_ptr` as its only parameter.
    /// The function itself must be an unsafe one, as it dereferences raw pointers.
    pub dtor: unsafe extern "C" fn(*mut u8),
}
// See the above [`TLS_DESTRUCTORS`] docs for why this is necessary.
const _: () = assert!(!core::mem::needs_drop::<TlsObjectDestructor>());

/// Takes ownership of the list of [`TlsObjectDestructor`]s
/// for TLS objects that have been initialized in this current task's TLS area.
/// 
/// This is only intended to be used by the task cleanup functions
/// after the current task has exited.
#[doc(hidden)]
pub fn take_current_tls_destructors() -> Vec<TlsObjectDestructor> {
    TLS_DESTRUCTORS.take()
}

/// Adds the given destructor callback to the current task's list of
/// TLS destructors that should be run when that task exits.
/// 
/// # Arguments
/// * `a`: the pointer to the object that will be destructed.
/// * `dtor`: the function that should be invoked to destruct the object pointed to by `a`.
///   When the current task exits, this function will be invoked with `a`
///   as its only argument, at which point the `dtor` function should drop `a`.
/// 
/// Currently the only value of `dtor` that is used is a type-specific monomorphized
/// version of the above [`fast::destroy_value()`] function.
fn register_dtor(object_ptr: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
    TLS_DESTRUCTORS.borrow_mut().push(TlsObjectDestructor { object_ptr, dtor });
}


//////////////////////////////////////////////////////////////////////////////////
// Everything below here is a modified version of thread_local!() from Rust std //
//////////////////////////////////////////////////////////////////////////////////

use core::cell::{Cell, UnsafeCell};
use core::fmt;
#[doc(hidden)]
pub use core::option;
use core::mem;
use core::hint;
use alloc::vec::Vec;

/// A thread-local storage key which owns its contents.
///
/// This TLS object is instantiated the [`thread_local!`] macro and offers 
/// one primary method to access it: the [`with`] method.
///
/// The [`with`] method yields a reference to the contained value which cannot be
/// sent across threads or escape the given closure.
///
/// # Initialization and Destruction
///
/// Initialization is lazily performed dynamically on the first call to [`with`]
/// within a thread (`Task` in Theseus), and values that implement [`Drop`] get destructed
/// when a thread exits.
///
/// A `LocalKey`'s initializer cannot recursively depend on itself, and using
/// a `LocalKey` in this way will cause the initializer to infinitely recurse
/// on the first call to `with`.
///
/// # Examples
///
/// ```ignore
/// use core::cell::RefCell;
/// use spawn::new_task_builder;
///
/// thread_local!(static FOO: RefCell<u32> = RefCell::new(1));
///
/// FOO.with(|f| {
///     assert_eq!(*f.borrow(), 1);
///     *f.borrow_mut() = 2;
/// });
///
/// // each thread starts out with the initial value of 1
/// let t = new_task_builder(
///     move |_: ()| {
///         FOO.with(|f| {
///             assert_eq!(*f.borrow(), 1);
///             *f.borrow_mut() = 3;
///         });
///     },
///     (), // empty arg
/// ).spawn().unwrap();
///
/// // wait for the new task to exit
/// t.join();
///
/// // we retain our original value of 2 despite the child thread
/// FOO.with(|f| {
///     assert_eq!(*f.borrow(), 2);
/// });
/// ```
///
/// [`with`]: LocalKey::with
pub struct LocalKey<T: 'static> {
    // This outer `LocalKey<T>` type is what's going to be stored in statics,
    // but actual data inside will be tagged with #[thread_local].
    // It's not valid for a true static to reference a #[thread_local] static,
    // so we get around that by exposing an accessor through a layer of function
    // indirection (this thunk).
    //
    // Note that the thunk is itself unsafe because the returned lifetime of the
    // slot where data lives, `'static`, is not actually valid. The lifetime
    // here is actually slightly shorter than the currently running thread!
    //
    // Although this is an extra layer of indirection, it should in theory be
    // trivially devirtualizable by LLVM because the value of `inner` never
    // changes and the constant should be readonly within a crate. This mainly
    // only runs into problems when TLS statics are exported across crates.
    inner: unsafe fn() -> Option<&'static T>,
}

impl<T: 'static> fmt::Debug for LocalKey<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("LocalKey").finish_non_exhaustive()
    }
}

/// Declare a new thread local storage key of type [`LocalKey`].
///
/// # Syntax
///
/// The macro wraps any number of static declarations and makes them thread local.
/// Publicity and attributes for each static are allowed. Example:
///
/// ```
/// use core::cell::RefCell;
/// thread_local! {
///     pub static FOO: RefCell<u32> = RefCell::new(1);
///
///     #[allow(unused)]
///     static BAR: RefCell<f32> = RefCell::new(1.0);
/// }
/// # fn main() {}
/// ```
///
/// See [`LocalKey`] documentation for more information.
#[macro_export]
macro_rules! thread_local {
    // empty (base case for the recursion)
    () => {};

    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }; $($rest:tt)*) => (
        $crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, const $init);
        $crate::thread_local!($($rest)*);
    );

    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = const { $init:expr }) => (
        $crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, const $init);
    );

    // process multiple declarations
    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr; $($rest:tt)*) => (
        $crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, $init);
        $crate::thread_local!($($rest)*);
    );

    // handle a single declaration
    ($(#[$attr:meta])* $vis:vis static $name:ident: $t:ty = $init:expr) => (
        $crate::__thread_local_inner!($(#[$attr])* $vis $name, $t, $init);
    );
}

#[doc(hidden)]
#[macro_export]
// This allows the `thread_local!()` macro to be used in a foreign crate
// without that crate having to specify the `#![feature(thread_local)]`.
// This is also done in the Rust standard library, so it's completely fine to do.
#[allow_internal_unstable(thread_local)]
macro_rules! __thread_local_inner {
    // used to generate the `LocalKey` value for const-initialized thread locals
    (@key $t:ty, const $init:expr) => {{
        #[inline]
        unsafe fn __getit() -> $crate::option::Option<&'static $t> {

            // Theseus supports `#[thread_local]`, so use it directly.
            {
                // If a dtor isn't needed we can do something "very raw" and
                // just get going.
                if !$crate::mem::needs_drop::<$t>() {
                    #[thread_local]
                    static mut VAL: $t = $init;
                    unsafe {
                        return Some(&VAL)
                    }
                }

                #[thread_local]
                static mut VAL: $t = $init;
                // 0 == dtor not registered
                // 1 == dtor registered, dtor not run
                // 2 == dtor registered and is running or has run
                #[thread_local]
                static mut STATE: u8 = 0;

                unsafe extern "C" fn destroy(ptr: *mut u8) {
                    let ptr = ptr as *mut $t;

                    unsafe {
                        assert_eq!(STATE, 1);
                        STATE = 2;
                        $crate::ptr::drop_in_place(ptr);
                    }
                }

                unsafe {
                    match STATE {
                        // 0 == we haven't registered a destructor, so do
                        //   so now.
                        0 => {
                            $crate::fast::Key::<$t>::register_dtor(
                                $crate::ptr::addr_of_mut!(VAL) as *mut u8,
                                destroy,
                            );
                            STATE = 1;
                            Some(&VAL)
                        }
                        // 1 == the destructor is registered and the value
                        //   is valid, so return the pointer.
                        1 => Some(&VAL),
                        // otherwise the destructor has already run, so we
                        // can't give access.
                        _ => None,
                    }
                }
            }
        }

        unsafe {
            $crate::LocalKey::new(__getit)
        }
    }};

    // used to generate the `LocalKey` value for `thread_local!`
    (@key $t:ty, $init:expr) => {
        {
            #[inline]
            fn __init() -> $t { $init }

            #[inline]
            unsafe fn __getit() -> $crate::option::Option<&'static $t> {
                #[thread_local]
                static __KEY: $crate::fast::Key<$t> =
                    $crate::fast::Key::new();

                // FIXME: remove the #[allow(...)] marker when macros don't
                // raise warning for missing/extraneous unsafe blocks anymore.
                // See https://github.com/rust-lang/rust/issues/74838.
                #[allow(unused_unsafe)]
                unsafe { __KEY.get(__init) }
            }

            unsafe {
                $crate::LocalKey::new(__getit)
            }
        }
    };
    ($(#[$attr:meta])* $vis:vis $name:ident, $t:ty, $($init:tt)*) => {
        $(#[$attr])* $vis const $name: $crate::LocalKey<$t> =
            $crate::__thread_local_inner!(@key $t, $($init)*);
    }
}

/// An error returned by [`LocalKey::try_with`](struct.LocalKey.html#method.try_with).
#[non_exhaustive]
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct AccessError;

impl fmt::Debug for AccessError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AccessError").finish()
    }
}

impl fmt::Display for AccessError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt("already destroyed", f)
    }
}

// The `Error` trait is not in the core library yet, so we can't use it.
// impl Error for AccessError {}

impl<T: 'static> LocalKey<T> {
    #[doc(hidden)]
    pub const unsafe fn new(inner: unsafe fn() -> Option<&'static T>) -> LocalKey<T> {
        LocalKey { inner }
    }

    /// Acquires a reference to the value in this TLS key.
    ///
    /// This will lazily initialize the value if this thread has not referenced
    /// this key yet.
    ///
    /// # Panics
    ///
    /// This function will `panic!()` if the key currently has its
    /// destructor running, and it **may** panic if the destructor has
    /// previously been run for this thread.
    pub fn with<F, R>(&'static self, f: F) -> R
    where
        F: FnOnce(&T) -> R,
    {
        self.try_with(f).expect(
            "cannot access a Thread Local Storage value \
             during or after destruction",
        )
    }

    /// Acquires a reference to the value in this TLS key.
    ///
    /// This will lazily initialize the value if this thread has not referenced
    /// this key yet. If the key has been destroyed (which may happen if this is called
    /// in a destructor), this function will return an [`AccessError`].
    ///
    /// # Panics
    ///
    /// This function will still `panic!()` if the key is uninitialized and the
    /// key's initializer panics.
    #[inline]
    pub fn try_with<F, R>(&'static self, f: F) -> Result<R, AccessError>
    where
        F: FnOnce(&T) -> R,
    {
        unsafe {
            let thread_local = (self.inner)().ok_or(AccessError)?;
            Ok(f(thread_local))
        }
    }
}

mod lazy {
    use crate::UnsafeCell;
    use crate::hint;
    use crate::mem;

    pub struct LazyKeyInner<T> {
        inner: UnsafeCell<Option<T>>,
    }

    impl<T> LazyKeyInner<T> {
        pub const fn new() -> LazyKeyInner<T> {
            LazyKeyInner { inner: UnsafeCell::new(None) }
        }

        pub unsafe fn get(&self) -> Option<&'static T> {
            // SAFETY: The caller must ensure no reference is ever handed out to
            // the inner cell nor mutable reference to the Option<T> inside said
            // cell. This make it safe to hand a reference, though the lifetime
            // of 'static is itself unsafe, making the get method unsafe.
            unsafe { (*self.inner.get()).as_ref() }
        }

        /// The caller must ensure that no reference is active: this method
        /// needs unique access.
        pub unsafe fn initialize<F: FnOnce() -> T>(&self, init: F) -> &'static T {
            // Execute the initialization up front, *then* move it into our slot,
            // just in case initialization fails.
            let value = init();
            let ptr = self.inner.get();

            // SAFETY:
            //
            // note that this can in theory just be `*ptr = Some(value)`, but due to
            // the compiler will currently codegen that pattern with something like:
            //
            //      ptr::drop_in_place(ptr)
            //      ptr::write(ptr, Some(value))
            //
            // Due to this pattern it's possible for the destructor of the value in
            // `ptr` (e.g., if this is being recursively initialized) to re-access
            // TLS, in which case there will be a `&` and `&mut` pointer to the same
            // value (an aliasing violation). To avoid setting the "I'm running a
            // destructor" flag we just use `mem::replace` which should sequence the
            // operations a little differently and make this safe to call.
            //
            // The precondition also ensures that we are the only one accessing
            // `self` at the moment so replacing is fine.
            unsafe {
                let _ = mem::replace(&mut *ptr, Some(value));
            }

            // SAFETY: With the call to `mem::replace` it is guaranteed there is
            // a `Some` behind `ptr`, not a `None` so `unreachable_unchecked`
            // will never be reached.
            unsafe {
                // After storing `Some` we want to get a reference to the contents of
                // what we just stored. While we could use `unwrap` here and it should
                // always work it empirically doesn't seem to always get optimized away,
                // which means that using something like `try_with` can pull in
                // panicking code and cause a large size bloat.
                match *ptr {
                    Some(ref x) => x,
                    None => hint::unreachable_unchecked(),
                }
            }
        }

        /// The other methods hand out references while taking &self.
        /// As such, callers of this method must ensure no `&` and `&mut` are
        /// available and used at the same time.
        #[allow(unused)]
        pub unsafe fn take(&mut self) -> Option<T> {
            // SAFETY: See doc comment for this method.
            unsafe { (*self.inner.get()).take() }
        }
    }
}

#[doc(hidden)]
pub mod fast {
    use super::lazy::LazyKeyInner;
    use crate::Cell;
    use crate::fmt;
    use crate::mem;
    use super::register_dtor;

    #[derive(Copy, Clone)]
    enum DtorState {
        Unregistered,
        Registered,
        RunningOrHasRun,
    }

    // This data structure has been carefully constructed so that the fast path
    // only contains one branch on x86. That optimization is necessary to avoid
    // duplicated tls lookups on OSX.
    //
    // LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
    pub struct Key<T> {
        // If `LazyKeyInner::get` returns `None`, that indicates either:
        //   * The value has never been initialized
        //   * The value is being recursively initialized
        //   * The value has already been destroyed or is being destroyed
        // To determine which kind of `None`, check `dtor_state`.
        //
        // This is very optimizer friendly for the fast path - initialized but
        // not yet dropped.
        inner: LazyKeyInner<T>,

        // Metadata to keep track of the state of the destructor. Remember that
        // this variable is thread-local, not global.
        dtor_state: Cell<DtorState>,
    }

    impl<T> fmt::Debug for Key<T> {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            f.debug_struct("Key").finish_non_exhaustive()
        }
    }

    impl<T> Key<T> {
        pub const fn new() -> Key<T> {
            Key { inner: LazyKeyInner::new(), dtor_state: Cell::new(DtorState::Unregistered) }
        }

        /*
         * Theseus Note: I'm not sure why this exists, but I don't think we need it in Theseus.
         *
        // note that this is just a publically-callable function only for the
        // const-initialized form of thread locals, basically a way to call the
        // free `register_dtor` function defined elsewhere in libstd.
        pub unsafe fn register_dtor(a: *mut u8, dtor: unsafe extern "C" fn(*mut u8)) {
            unsafe {
                register_dtor(a, dtor);
            }
        }
        */

        pub unsafe fn get<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
            // SAFETY: See the definitions of `LazyKeyInner::get` and
            // `try_initialize` for more informations.
            //
            // The caller must ensure no mutable references are ever active to
            // the inner cell or the inner T when this is called.
            // The `try_initialize` is dependant on the passed `init` function
            // for this.
            unsafe {
                match self.inner.get() {
                    Some(val) => Some(val),
                    None => self.try_initialize(init),
                }
            }
        }

        // `try_initialize` is only called once per fast thread local variable,
        // except in corner cases where thread_local dtors reference other
        // thread_local's, or it is being recursively initialized.
        //
        // Macos: Inlining this function can cause two `tlv_get_addr` calls to
        // be performed for every call to `Key::get`.
        // LLVM issue: https://bugs.llvm.org/show_bug.cgi?id=41722
        #[inline(never)]
        unsafe fn try_initialize<F: FnOnce() -> T>(&self, init: F) -> Option<&'static T> {
            // SAFETY: See comment above (this function doc).
            if !mem::needs_drop::<T>() || unsafe { self.try_register_dtor() } {
                // SAFETY: See comment above (his function doc).
                Some(unsafe { self.inner.initialize(init) })
            } else {
                None
            }
        }

        // `try_register_dtor` is only called once per fast thread local
        // variable, except in corner cases where thread_local dtors reference
        // other thread_local's, or it is being recursively initialized.
        unsafe fn try_register_dtor(&self) -> bool {
            match self.dtor_state.get() {
                DtorState::Unregistered => {
                    // SAFETY: dtor registration happens before initialization.
                    // Passing `self` as a pointer while using `destroy_value<T>`
                    // is safe because the function will build a pointer to a
                    // Key<T>, which is the type of self and so find the correct
                    // size.
                    unsafe { register_dtor(self as *const _ as *mut u8, destroy_value::<T>) };
                    self.dtor_state.set(DtorState::Registered);
                    true
                }
                DtorState::Registered => {
                    // recursively initialized
                    true
                }
                DtorState::RunningOrHasRun => false,
            }
        }
    }

    unsafe extern "C" fn destroy_value<T>(ptr: *mut u8) {
        let ptr = ptr as *mut Key<T>;

        // SAFETY:
        //
        // The pointer `ptr` has been built just above and comes from
        // `try_register_dtor` where it is originally a Key<T> coming from `self`,
        // making it non-NUL and of the correct type.
        //
        // Right before we run the user destructor be sure to set the
        // `Option<T>` to `None`, and `dtor_state` to `RunningOrHasRun`. This
        // causes future calls to `get` to run `try_initialize_drop` again,
        // which will now fail, and return `None`.
        unsafe {
            let value = (*ptr).inner.take();
            (*ptr).dtor_state.set(DtorState::RunningOrHasRun);
            drop(value);
        }
    }
}