1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
//! This crate creates the abstraction of `stdio`. They are essentially ring buffer of bytes.
//! It also creates the queue for `KeyEvent`, which allows applications to have direct access
//! to keyboard events.
#![no_std]
extern crate alloc;
extern crate spin;
extern crate core2;
extern crate keycodes_ascii;
use alloc::collections::VecDeque;
use alloc::sync::Arc;
use alloc::boxed::Box;
use alloc::string::String;
use alloc::vec::Vec;
use spin::{Mutex, MutexGuard};
use core2::io::{Read, Write};
use keycodes_ascii::KeyEvent;
use core::ops::Deref;
/// A ring buffer with an EOF mark.
pub struct RingBufferEof<T> {
/// The ring buffer.
queue: VecDeque<T>,
/// The EOF mark. We meet EOF when it equals `true`.
end: bool
}
/// A reference to a ring buffer with an EOF mark with mutex protection.
pub type RingBufferEofRef<T> = Arc<Mutex<RingBufferEof<T>>>;
/// A ring buffer containing bytes. It forms `stdin`, `stdout` and `stderr`.
/// The two `Arc`s actually point to the same ring buffer. It is designed to prevent
/// interleaved reading but at the same time allow writing to the ring buffer while
/// the reader is holding its lock, and vice versa.
pub struct Stdio {
/// This prevents interleaved reading.
read_access: Arc<Mutex<RingBufferEofRef<u8>>>,
/// This prevents interleaved writing.
write_access: Arc<Mutex<RingBufferEofRef<u8>>>
}
/// A reader to stdio buffers.
#[derive(Clone)]
pub struct StdioReader {
/// Inner buffer to support buffered read.
inner_buf: Box<[u8]>,
/// The length of actual buffered bytes.
inner_content_len: usize,
/// Points to the ring buffer.
read_access: Arc<Mutex<RingBufferEofRef<u8>>>
}
/// A writer to stdio buffers.
#[derive(Clone)]
pub struct StdioWriter {
/// Points to the ring buffer.
write_access: Arc<Mutex<RingBufferEofRef<u8>>>
}
/// `StdioReadGuard` acts like `MutexGuard`, it locks the underlying ring buffer during its
/// lifetime, and provides reading methods to the ring buffer. The lock will be automatically
/// released on dropping of this structure.
pub struct StdioReadGuard<'a> {
guard: MutexGuard<'a, RingBufferEofRef<u8>>
}
/// `StdioReadGuard` acts like `MutexGuard`, it locks the underlying ring buffer during its
/// lifetime, and provides writing methods to the ring buffer. The lock will be automatically
/// released on dropping of this structure.
pub struct StdioWriteGuard<'a> {
guard: MutexGuard<'a, RingBufferEofRef<u8>>
}
impl<T> RingBufferEof<T> {
/// Create a new ring buffer.
fn new() -> RingBufferEof<T> {
RingBufferEof {
queue: VecDeque::new(),
end: false
}
}
}
impl Stdio {
/// Create a new stdio buffer.
pub fn new() -> Stdio {
let ring_buffer = Arc::new(Mutex::new(RingBufferEof::new()));
Stdio {
read_access: Arc::new(Mutex::new(Arc::clone(&ring_buffer))),
write_access: Arc::new(Mutex::new(ring_buffer))
}
}
/// Get a reader to the stdio buffer. Note that each reader has its own
/// inner buffer. The buffer size is set to be 256 bytes. Resort to
/// `get_reader_with_buf_capacity` if one needs a different buffer size.
pub fn get_reader(&self) -> StdioReader {
StdioReader {
inner_buf: Box::new([0u8; 256]),
inner_content_len: 0,
read_access: Arc::clone(&self.read_access)
}
}
/// Get a reader to the stdio buffer with a customized buffer size.
/// Note that each reader has its own inner buffer.
pub fn get_reader_with_buf_capacity(&self, capacity: usize) -> StdioReader {
let mut inner_buf = Vec::with_capacity(capacity);
inner_buf.resize(capacity, 0u8);
StdioReader {
inner_buf: inner_buf.into_boxed_slice(),
inner_content_len: 0,
read_access: Arc::clone(&self.read_access)
}
}
/// Get a writer to the stdio buffer.
pub fn get_writer(&self) -> StdioWriter {
StdioWriter {
write_access: Arc::clone(&self.write_access)
}
}
}
impl StdioReader {
/// Lock the reader and return a guard that can perform reading operation to that buffer.
/// Note that this lock does not lock the underlying ring buffer. It only excludes other
/// readr from performing simultaneous read, but does *not* prevent a writer to perform
/// writing to the underlying ring buffer.
pub fn lock(&self) -> StdioReadGuard {
StdioReadGuard {
guard: self.read_access.lock()
}
}
/// Read a line from the ring buffer and return. Remaining bytes are stored in the inner
/// buffer. Do NOT use this function alternatively with `read()` method defined in
/// `StdioReadGuard`. This function returns the number of bytes read. It will return
/// zero only upon EOF.
pub fn read_line(&mut self, buf: &mut String) -> Result<usize, core2::io::Error> {
let mut total_cnt = 0usize; // total number of bytes read this time
let mut new_cnt; // number of bytes returned from a `read()` invocation
let mut tmp_buf = Vec::new(); // temporary buffer
let mut line_finished = false; // mark if we have finished a line
// Copy from the inner buffer. Process the remaining characters from last read first.
tmp_buf.resize(self.inner_buf.len(), 0);
tmp_buf[0..self.inner_content_len].clone_from_slice(&self.inner_buf[0..self.inner_content_len]);
new_cnt = self.inner_content_len;
self.inner_content_len = 0;
loop {
// Try to find an '\n' character.
let mut cnt_before_new_line = new_cnt;
for (idx, c) in tmp_buf[0..new_cnt].iter().enumerate() {
if *c as char == '\n' {
cnt_before_new_line = idx + 1;
line_finished = true;
break;
}
}
// Append new characters to output buffer (until '\n').
total_cnt += cnt_before_new_line;
let new_str = String::from_utf8_lossy(&tmp_buf[0..cnt_before_new_line]);
buf.push_str(&new_str);
// If we have read a whole line, copy any byte left to inner buffer, and then return.
if line_finished {
self.inner_buf[0..new_cnt-cnt_before_new_line].clone_from_slice(&tmp_buf[cnt_before_new_line..new_cnt]);
self.inner_content_len = new_cnt - cnt_before_new_line;
return Ok(total_cnt);
}
// We have not finished a whole line. Try to read more from the ring buffer, until
// we hit EOF.
let mut locked = self.lock();
new_cnt = locked.read(&mut tmp_buf[..])?;
if new_cnt == 0 && locked.is_eof() { return Ok(total_cnt); }
}
}
}
impl StdioWriter {
/// Lock the writer and return a guard that can perform writing operation to that buffer.
/// Note that this lock does not lock the underlying ring buffer. It only excludes other
/// writer from performing simultaneous write, but does *not* prevent a reader to perform
/// reading to the underlying ring buffer.
pub fn lock(&self) -> StdioWriteGuard {
StdioWriteGuard {
guard: self.write_access.lock()
}
}
}
impl<'a> Read for StdioReadGuard<'a> {
/// Read from the ring buffer. Returns the number of bytes read.
///
/// Currently it is not possible to return an error,
/// but one should *not* assume that because it is subject to change in the future.
///
/// Note that this method will block until at least one byte is available to be read.
/// It will only return zero under one of two scenarios:
/// 1. The EOF flag has been set.
/// 2. The buffer specified was 0 bytes in length.
fn read(&mut self, buf: &mut [u8]) -> Result<usize, core2::io::Error> {
// Deal with the edge case that the buffer specified was 0 bytes in length.
if buf.len() == 0 { return Ok(0); }
let mut cnt: usize = 0;
loop {
let end; // EOF flag
{
let mut locked_ring_buf = self.guard.lock();
let mut buf_iter = buf[cnt..].iter_mut();
// Keep reading if we have empty space in the output buffer
// and available byte in the ring buffer.
while let Some(buf_entry) = buf_iter.next() {
if let Some(queue_elem) = locked_ring_buf.queue.pop_front() {
*buf_entry = queue_elem;
cnt += 1;
} else {
break;
}
}
end = locked_ring_buf.end;
} // the lock on the ring buffer is guaranteed to be dropped here
// Break if we have read something or we encounter EOF.
if cnt > 0 || end { break; }
}
return Ok(cnt);
}
}
impl<'a> StdioReadGuard<'a> {
/// Same as `read()`, but is non-blocking.
///
/// Returns `Ok(0)` when the underlying buffer is empty.
pub fn try_read(&mut self, buf: &mut [u8]) -> Result<usize, core2::io::Error> {
// Deal with the edge case that the buffer specified was 0 bytes in length.
if buf.len() == 0 { return Ok(0); }
let mut buf_iter = buf.iter_mut();
let mut cnt: usize = 0;
let mut locked_ring_buf = self.guard.lock();
// Keep reading if we have empty space in the output buffer
// and available byte(s) in the ring buffer.
while let Some(buf_entry) = buf_iter.next() {
if let Some(queue_elem) = locked_ring_buf.queue.pop_front() {
*buf_entry = queue_elem;
cnt += 1;
} else {
break;
}
}
return Ok(cnt);
}
/// Returns the number of bytes still in the read buffer.
pub fn remaining_bytes(&self) -> usize {
return self.guard.lock().queue.len();
}
}
impl<'a> Write for StdioWriteGuard<'a> {
/// Write to the ring buffer, returniong the number of bytes written.
///
/// When this method is called after setting the EOF flag, it returns error with `ErrorKind`
/// set to `UnexpectedEof`.
///
/// Also note that this method does *not* guarantee to write all given bytes, although it currently
/// does so. Always check the return value when using this method. Otherwise, use `write_all` to
/// ensure that all given bytes are written.
fn write(&mut self, buf: &[u8]) -> Result<usize, core2::io::Error> {
if self.guard.lock().end {
return Err(core2::io::Error::new(core2::io::ErrorKind::UnexpectedEof,
"cannot write to a stream with EOF set"));
}
let mut locked_ring_buf = self.guard.lock();
for byte in buf {
locked_ring_buf.queue.push_back(*byte)
}
Ok(buf.len())
}
/// The function required by `Write` trait. Currently it performs nothing,
/// since everything is write directly to the ring buffer in `write` method.
fn flush(&mut self) -> Result<(), core2::io::Error> {
Ok(())
}
}
impl<'a> StdioReadGuard<'a> {
/// Check if the EOF flag of the queue has been set.
pub fn is_eof(&self) -> bool {
self.guard.lock().end
}
}
impl<'a> StdioWriteGuard<'a> {
/// Set the EOF flag of the queue to true.
pub fn set_eof(&mut self) {
self.guard.lock().end = true;
}
}
pub struct KeyEventQueue {
/// A ring buffer storing `KeyEvent`.
key_event_queue: RingBufferEofRef<KeyEvent>
}
/// A reader to keyevent ring buffer.
#[derive(Clone)]
pub struct KeyEventQueueReader {
/// Points to the ring buffer storing `KeyEvent`.
key_event_queue: RingBufferEofRef<KeyEvent>
}
/// A writer to keyevent ring buffer.
#[derive(Clone)]
pub struct KeyEventQueueWriter {
/// Points to the ring buffer storing `KeyEvent`.
key_event_queue: RingBufferEofRef<KeyEvent>
}
impl KeyEventQueue {
/// Create a new ring buffer storing `KeyEvent`.
pub fn new() -> KeyEventQueue {
KeyEventQueue {
key_event_queue: Arc::new(Mutex::new(RingBufferEof::new()))
}
}
/// Get a reader to the ring buffer.
pub fn get_reader(&self) -> KeyEventQueueReader {
KeyEventQueueReader {
key_event_queue: self.key_event_queue.clone()
}
}
/// Get a writer to the ring buffer.
pub fn get_writer(&self) -> KeyEventQueueWriter {
KeyEventQueueWriter {
key_event_queue: self.key_event_queue.clone()
}
}
}
impl KeyEventQueueReader {
/// Try to read a keyevent from the ring buffer. It returns `None` if currently
/// the ring buffer is empty.
pub fn read_one(&self) -> Option<KeyEvent> {
let mut locked_queue = self.key_event_queue.lock();
locked_queue.queue.pop_front()
}
}
impl KeyEventQueueWriter {
/// Push a keyevent into the ring buffer.
pub fn write_one(&self, key_event: KeyEvent) {
let mut locked_queue = self.key_event_queue.lock();
locked_queue.queue.push_back(key_event);
}
}
/// A structure that allows applications to access keyboard events directly.
/// When it gets instantiated, it `take`s the reader of the `KeyEventQueue` away from the `shell`,
/// or whichever entity previously owned the queue.
/// When it goes out of the scope, the taken reader will be automatically returned
/// back to the `shell` or the original owner in its `Drop` routine.
pub struct KeyEventReadGuard {
/// The taken reader of the `KeyEventQueue`.
reader: Option<KeyEventQueueReader>,
/// The closure to be excuted on dropping.
closure: Box<dyn Fn(&mut Option<KeyEventQueueReader>)>
}
impl KeyEventReadGuard {
/// Create a new `KeyEventReadGuard`. This function *takes* a reader
/// to `KeyEventQueue`. Thus, the `reader` will never be `None` until the
/// `drop()` method.
pub fn new(
reader: KeyEventQueueReader,
closure: Box<dyn Fn(&mut Option<KeyEventQueueReader>)>
) -> KeyEventReadGuard {
KeyEventReadGuard {
reader: Some(reader),
closure
}
}
}
impl Drop for KeyEventReadGuard {
/// Returns the reader of `KeyEventQueue` back to the previous owner by executing the closure.
fn drop(&mut self) {
(self.closure)(&mut self.reader);
}
}
impl Deref for KeyEventReadGuard {
type Target = Option<KeyEventQueueReader>;
fn deref(&self) -> &Self::Target {
&self.reader
}
}