1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
use core::{convert::TryFrom, fmt, str::FromStr};
use super::{TriState, SerialPortInterruptEvent};
use port_io::Port;
/// The base port I/O addresses for COM serial ports.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[repr(u16)]
pub enum SerialPortAddress {
/// The base port I/O address for the COM1 serial port.
COM1 = 0x3F8,
/// The base port I/O address for the COM2 serial port.
COM2 = 0x2F8,
/// The base port I/O address for the COM3 serial port.
COM3 = 0x3E8,
/// The base port I/O address for the COM4 serial port.
COM4 = 0x2E8,
}
impl TryFrom<&str> for SerialPortAddress {
type Error = ();
fn try_from(s: &str) -> Result<Self, Self::Error> {
match s {
v if v.eq_ignore_ascii_case("COM1") => Ok(Self::COM1),
v if v.eq_ignore_ascii_case("COM2") => Ok(Self::COM2),
v if v.eq_ignore_ascii_case("COM3") => Ok(Self::COM3),
v if v.eq_ignore_ascii_case("COM4") => Ok(Self::COM4),
_ => Err(()),
}
}
}
impl FromStr for SerialPortAddress {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::try_from(s)
}
}
impl TryFrom<u16> for SerialPortAddress {
type Error = ();
fn try_from(port: u16) -> Result<Self, Self::Error> {
match port {
p if p == Self::COM1 as u16 => Ok(Self::COM1),
p if p == Self::COM2 as u16 => Ok(Self::COM2),
p if p == Self::COM3 as u16 => Ok(Self::COM3),
p if p == Self::COM4 as u16 => Ok(Self::COM4),
_ => Err(()),
}
}
}
// The E9 port can be used with the Bochs emulator for extra debugging info.
// const PORT_E9: u16 = 0xE9; // for use with bochs
// static E9: Port<u8> = Port::new(PORT_E9); // see Bochs's port E9 hack
/// A serial port and its various data and control registers.
///
/// TODO: use PortReadOnly and PortWriteOnly to set permissions for each register.
pub struct SerialPort {
/// The data port, for receiving and transmitting data.
data: Port<u8>,
interrupt_enable: Port<u8>,
interrupt_id_fifo_control: Port<u8>,
line_control: Port<u8>,
modem_control: Port<u8>,
line_status: Port<u8>,
_modem_status: Port<u8>,
_scratch: Port<u8>,
}
impl Drop for SerialPort {
fn drop(&mut self) {
if let Ok(sp) = SerialPortAddress::try_from(self.data.port_address()).map(|spa| spa.to_static_port()) {
let mut sp_locked = sp.lock();
if let TriState::Taken = &*sp_locked {
let dummy = SerialPort {
data: Port::new(0),
interrupt_enable: Port::new(0),
interrupt_id_fifo_control: Port::new(0),
line_control: Port::new(0),
modem_control: Port::new(0),
line_status: Port::new(0),
_modem_status: Port::new(0),
_scratch: Port::new(0),
};
let dropped = core::mem::replace(self, dummy);
*sp_locked = TriState::Inited(dropped);
}
}
}
}
impl SerialPort {
/// Creates and returns a new serial port structure,
/// and initializes that port using standard configuration parameters.
///
/// The configuration parameters used in this function are:
/// * A baud rate of 38400.
/// * "8N1" mode: data word length of 8 bits, with no parity and one stop bit.
/// * FIFO buffer enabled with a threshold of 14 bytes.
/// * Interrupts enabled for receiving bytes only (not transmitting).
///
/// # Arguments
/// * `base_port`: the port number (port I/O address) of the serial port.
/// This should generally be one of the known serial ports, e.g., on x86,
/// [`SerialPortAddress::COM1`] through [`SerialPortAddress::COM4`].
///
/// Note: if you are experiencing problems with serial port behavior,
/// try enabling the loopback test part of this function to see if that passes.
pub fn new(base_port: u16) -> SerialPort {
let serial = SerialPort {
data: Port::new(base_port ),
interrupt_enable: Port::new(base_port + 1),
interrupt_id_fifo_control: Port::new(base_port + 2),
line_control: Port::new(base_port + 3),
modem_control: Port::new(base_port + 4),
line_status: Port::new(base_port + 5),
_modem_status: Port::new(base_port + 6),
_scratch: Port::new(base_port + 7),
};
// SAFE: we are just accessing this serial port's registers.
unsafe {
// Before doing anything, disable interrupts for this serial port.
serial.interrupt_enable.write(0x00);
// Enter DLAB mode so we can set the baud rate divisor
serial.line_control.write(0x80);
// Set baud rate to 38400, which requires a divisor value of `3`.
// To do this, we enter DLAB mode (to se the baud rate divisor),
// the write the low byte of the divisor to the data register (DLL)
// and the high byte to the interrupt enable register (DLH).
serial.data.write(0x03);
serial.interrupt_enable.write(0x00);
// Exit DLAB mode. At the same time, set the data word length to 8 bits,
// also specifying no parity and one stop bit. This is known as "8N1" mode.
serial.line_control.write(0x03);
// Enable the FIFO queues (buffers in hardware) and clear both the transmit and receive queues.
// Also, set an interrupt threshold of 14 (0xC) bytes, which is the maximum value.
// Note that serial ports will fire an interrupt if there is a "small delay"
// between bytes, so we don't always have to wait for 14 entire bytes to arrive.
serial.interrupt_id_fifo_control.write(0xC7);
// Mark the data terminal as ready, signal request to send
// and enable auxilliary output #2 (used as interrupt line for CPU)
serial.modem_control.write(0x0B);
// Below, we can optionally test the serial port to see if the chip is working.
let _test_passed = if false {
const TEST_BYTE: u8 = 0xAE;
// Enable "loopback" mode (set bit 4), write a byte to the data port and try to read it back.
serial.modem_control.write(0x10 | (TEST_BYTE & 0x0F));
serial.data.write(TEST_BYTE);
let byte_read_back = serial.data.read();
byte_read_back == TEST_BYTE
} else {
true
};
// Note: even if the above loopback test failed, we go ahead and ensure the serial port
// remains in a working state, because some hardware doesn't support loopback mode.
// Set the serial prot to regular mode (non-loopback) and enable standard config bits:
// Auxiliary Output 1 and 2, Request to Send (RTS), and Data Terminal Ready (DTR).
serial.modem_control.write(0x0F);
// Finally, enable interrupts for this serial port, for received data only.
serial.interrupt_enable.write(0x01);
}
serial
}
/// Enable or disable interrupts on this serial port for various events.
pub fn enable_interrupt(&mut self, event: SerialPortInterruptEvent, enable: bool) {
let existing = self.interrupt_enable.read();
let new = if enable {
existing | event as u8
} else {
existing & !(event as u8)
};
unsafe {
self.interrupt_enable.write(new);
}
}
/// Clears an interrupt in the serial port controller
pub fn acknowledge_interrupt(&mut self, _event: SerialPortInterruptEvent) {
// no-op on x86_64
}
/// Write the given string to the serial port, blocking until data can be transmitted.
///
/// # Special characters
/// Because this function writes strings, it will transmit a carriage return `'\r'`
/// after transmitting a line feed (new line) `'\n'` to ensure a proper new line.
pub fn out_str(&mut self, s: &str) {
for byte in s.bytes() {
self.out_byte(byte);
if byte == b'\n' {
self.out_byte(b'\r');
} else if byte == b'\r' {
self.out_byte(b'\n');
}
}
}
/// Write the given byte to the serial port, blocking until data can be transmitted.
///
/// This writes the byte directly with no special cases, e.g., new lines.
pub fn out_byte(&mut self, byte: u8) {
while !self.ready_to_transmit() { }
// SAFE: we're just writing to the serial port, which has already been initialized.
unsafe {
self.data.write(byte);
// E9.write(byte); // for Bochs debugging
}
}
/// Write the given bytes to the serial port, blocking until data can be transmitted.
///
/// This writes the bytes directly with no special cases, e.g., new lines.
pub fn out_bytes(&mut self, bytes: &[u8]) {
for byte in bytes {
self.out_byte(*byte);
}
}
/// Read one byte from the serial port, blocking until data is available.
pub fn in_byte(&mut self) -> u8 {
while !self.data_available() { }
self.data.read()
}
/// Reads multiple bytes from the serial port into the given `buffer`, non-blocking.
///
/// The buffer will be filled with as many bytes as are available in the serial port.
/// Once data is no longer available to be read, the read operation will stop.
///
/// If no data is immediately available on the serial port, this will read nothing and return `0`.
///
/// Returns the number of bytes read into the given `buffer`.
pub fn in_bytes(&mut self, buffer: &mut [u8]) -> usize {
let mut bytes_read = 0;
for byte in buffer {
if !self.data_available() {
break;
}
*byte = self.data.read();
bytes_read += 1;
}
bytes_read
}
/// Returns `true` if the serial port is ready to transmit a byte.
#[inline(always)]
pub fn ready_to_transmit(&self) -> bool {
self.line_status.read() & 0x20 == 0x20
}
/// Returns `true` if the serial port has data available to read.
#[inline(always)]
pub fn data_available(&self) -> bool {
self.line_status.read() & 0x01 == 0x01
}
pub fn base_port_address(&self) -> SerialPortAddress {
SerialPortAddress::try_from(self.data.port_address())
.expect("Invalid port base address")
}
}
impl fmt::Write for SerialPort {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.out_str(s);
Ok(())
}
}