1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
//! PCI Configuration Space Access
//!
//! ## Terminology
//!
//! This crate deals with multiple types of interrupts:
//! * Legacy (INTx) interrupts are the oldest PCI interrupt representation.
//! * Four interrupt pins are shared among all devices.
//! * This crate refers to these legacy interrupts as "intx".
//!
//! * MSI (Message Signaled Interrupts) appeared with PCI express.
//! * They allow devices to allocate up to 32 interrupt numbers.
//! * This crate refers to these interrupts as "msi".
//!
//! * MSI-X messages appeared with PCIe 3.0.
//! * They allow devices to allocate up to 2048 interrupt numbers.
//! * This crate refers to these interrupts as "msix".
//!
//! Note: while pci currently uses port-io on x86 and mmio on aarch64,
//! x86 may also support memory-based PCI configuration in the future;
//! port-io is the legacy way to access the config space.
//!
//! For context on the various interrupt mechanisms (MSI/MSI-X/INTx):
//! - [this StackExchange reply](https://electronics.stackexchange.com/a/343218)
//! - PCI Express Base Specification, Revision 2, Chapter 6.1 - Interrupt & PME Support
#![no_std]
#![allow(dead_code)]
#![feature(abi_x86_interrupt)]
extern crate alloc;
use log::*;
use core::{fmt, ops::{Deref, DerefMut}, mem::size_of, task::Waker};
use alloc::vec::Vec;
use spin::{Once, Mutex};
use memory::{PhysicalAddress, BorrowedSliceMappedPages, Mutable, MappedPages, map_frame_range, MMIO_FLAGS};
use bit_field::BitField;
use volatile::Volatile;
use zerocopy::FromBytes;
use cpu::CpuId;
use interrupts::{InterruptNumber, InterruptHandler, interrupt_handler, register_interrupt, EoiBehaviour};
#[cfg(target_arch = "x86_64")]
use {
port_io::Port,
interrupts::IRQ_BASE_OFFSET,
};
#[cfg(target_arch = "aarch64")]
use {
arm_boards::BOARD_CONFIG,
interrupt_controller::{SystemInterruptController, SystemInterruptControllerApi},
};
#[derive(Debug, Copy, Clone)]
/// The span of bytes within a 4-byte chunk that a PCI register occupies.
///
/// The PCI configuration space is represented as an array of 4-byte chunks.
/// This struct defines where in a given 4-byte chunk a PCI register exists.
enum RegisterSpan {
/// Bits [0:31]
FullDword,
/// Bits [0:15]
Word0,
/// Bits [16:31]
Word1,
/// Bits [0:7]
Byte0,
/// Bits [8:15]
Byte1,
/// Bits [16:23]
Byte2,
/// Bits [24:31]
Byte3,
}
use RegisterSpan::*;
/// A definition of a PCI configuration space register.
#[derive(Clone, Copy, Debug)]
struct PciRegister {
/// The location of this register in the PCI configuration space,
/// given as an index into the space as an array of `u32`s (4-byte chunks).
index: u8,
/// The location of this register within the 4-byte chunk.
span: RegisterSpan,
}
impl PciRegister {
const fn from_offset(raw_offset: u8, size_in_bytes: u8) -> Self {
let index = raw_offset >> 2;
match (size_in_bytes, raw_offset & 0b11) {
(1, 0) => PciRegister { index, span: Byte0 },
(1, 1) => PciRegister { index, span: Byte1 },
(1, 2) => PciRegister { index, span: Byte2 },
(1, 3) => PciRegister { index, span: Byte3 },
(2, 0) => PciRegister { index, span: Word0 },
(2, 2) => PciRegister { index, span: Word1 },
(4, 0) => PciRegister { index, span: FullDword },
// Throw a const panic (compile error) for invalid values.
_ => panic!("Invalid PciRegister specification"),
}
}
}
/// A macro for easily defining PCI registers using offsets from the PCI spec.
///
/// The last argument only accepts register sizes of 1, 2, and 4 bytes.
macro_rules! pci_register {
($name:ident, $offset:expr, 1) => {
const $name: PciRegister = PciRegister::from_offset($offset, 1);
};
($name:ident, $offset:expr, 2) => {
const $name: PciRegister = PciRegister::from_offset($offset, 2);
};
($name:ident, $offset:expr, 4) => {
const $name: PciRegister = PciRegister::from_offset($offset, 4);
};
}
// The below constants define the PCI configuration space.
// More info here: <http://wiki.osdev.org/PCI#PCI_Device_Structure>
pci_register!(PCI_VENDOR_ID, 0x00, 2);
pci_register!(PCI_DEVICE_ID, 0x02, 2);
pci_register!(PCI_COMMAND, 0x04, 2);
pci_register!(PCI_STATUS, 0x06, 2);
pci_register!(PCI_REVISION_ID, 0x08, 1);
pci_register!(PCI_PROG_IF, 0x09, 1);
pci_register!(PCI_SUBCLASS, 0x0A, 1);
pci_register!(PCI_CLASS, 0x0B, 1);
pci_register!(PCI_CACHE_LINE_SIZE, 0x0C, 1);
pci_register!(PCI_LATENCY_TIMER, 0x0D, 1);
pci_register!(PCI_HEADER_TYPE, 0x0E, 1);
pci_register!(PCI_BIST, 0x0F, 1);
pci_register!(PCI_BAR0, 0x10, 4);
pci_register!(PCI_BAR1, 0x14, 4);
pci_register!(PCI_BAR2, 0x18, 4);
pci_register!(PCI_BAR3, 0x1C, 4);
pci_register!(PCI_BAR4, 0x20, 4);
pci_register!(PCI_BAR5, 0x24, 4);
pci_register!(PCI_CARDBUS_CIS, 0x28, 4);
pci_register!(PCI_SUBSYSTEM_VENDOR_ID, 0x2C, 2);
pci_register!(PCI_SUBSYSTEM_ID, 0x2E, 2);
pci_register!(PCI_EXPANSION_ROM_BASE, 0x30, 4);
pci_register!(PCI_CAPABILITIES, 0x34, 1);
// 0x35 through 0x3B are reserved
pci_register!(PCI_INTERRUPT_LINE, 0x3C, 1);
pci_register!(PCI_INTERRUPT_PIN, 0x3D, 1);
pci_register!(PCI_MIN_GRANT, 0x3E, 1);
pci_register!(PCI_MAX_LATENCY, 0x3F, 1);
const PCI_COMMAND_INT_DISABLED: u16 = 1 << 10;
#[repr(u8)]
pub enum PciCapability {
Msi = 0x05,
Msix = 0x11,
}
/// If a BAR's bits [2:1] equal this value, that BAR describes a 64-bit address.
/// If not, that BAR describes a 32-bit address.
const BAR_ADDRESS_IS_64_BIT: u32 = 2;
/// There is a maximum of 256 PCI buses on one system.
const MAX_PCI_BUSES: u16 = 256;
/// There is a maximum of 32 slots on one PCI bus.
const MAX_SLOTS_PER_BUS: u8 = 32;
/// There is a maximum of 32 functions (devices) on one PCI slot.
const MAX_FUNCTIONS_PER_SLOT: u8 = 8;
/// Addresses/offsets into the PCI configuration space should clear the
/// least-significant 2 bits in order to be 4-byte aligned.
const PCI_CONFIG_ADDRESS_OFFSET_MASK: u8 = 0b11111100;
const CONFIG_ADDRESS: u16 = 0xCF8;
const CONFIG_DATA: u16 = 0xCFC;
/// This port is used to specify the address in the PCI configuration space
/// for the next read/write of the `PCI_CONFIG_DATA_PORT`.
#[cfg(target_arch = "x86_64")]
static PCI_CONFIG_ADDRESS_PORT: Mutex<Port<u32>> = Mutex::new(Port::new(CONFIG_ADDRESS));
/// This port is used to transfer data to or from the PCI configuration space
/// specified by a previous write to the `PCI_CONFIG_ADDRESS_PORT`.
#[cfg(target_arch = "x86_64")]
static PCI_CONFIG_DATA_PORT: Mutex<Port<u32>> = Mutex::new(Port::new(CONFIG_DATA));
#[cfg(target_arch = "x86_64")]
const BASE_OFFSET: u32 = 0x8000_0000;
#[cfg(target_arch = "aarch64")]
type PciConfigSpace = BorrowedSliceMappedPages<Volatile<u32>, Mutable>;
#[cfg(target_arch = "aarch64")]
static PCI_CONFIG_SPACE: Mutex<Once<PciConfigSpace>> = Mutex::new(Once::new());
#[cfg(target_arch = "aarch64")]
const BASE_OFFSET: u32 = 0;
pub enum InterruptPin {
A,
B,
C,
D,
}
/// Returns a list of all PCI buses in this system.
/// If the PCI bus hasn't been initialized, this initializes the PCI bus & scans it to enumerates devices.
pub fn get_pci_buses() -> Result<&'static Vec<PciBus>, &'static str> {
static PCI_BUSES: Once<Vec<PciBus>> = Once::new();
PCI_BUSES.try_call_once(scan_pci)
}
/// Returns a reference to the `PciDevice` with the given bus, slot, func identifier.
/// If the PCI bus hasn't been initialized, this initializes the PCI bus & scans it to enumerates devices.
pub fn get_pci_device_bsf(bus: u8, slot: u8, func: u8) -> Result<Option<&'static PciDevice>, &'static str> {
for b in get_pci_buses()? {
if b.bus_number == bus {
for d in &b.devices {
if d.slot == slot && d.func == func {
return Ok(Some(d));
}
}
}
}
Ok(None)
}
/// Returns an iterator that iterates over all `PciDevice`s, in no particular guaranteed order.
/// If the PCI bus hasn't been initialized, this initializes the PCI bus & scans it to enumerates devices.
pub fn pci_device_iter() -> Result<impl Iterator<Item = &'static PciDevice>, &'static str> {
Ok(get_pci_buses()?.iter().flat_map(|b| b.devices.iter()))
}
static INTX_DEVICES: Mutex<Vec<&'static PciDevice>> = Mutex::new(Vec::new());
static INTX_NUMBERS: Mutex<[Option<InterruptNumber>; 4]> = Mutex::new([None; 4]);
// Architecture-independent INTx handlers
macro_rules! intx_handler {
($name:ident, $num:literal) => {
interrupt_handler!($name, {
let intx_numbers = INTX_NUMBERS.lock();
intx_numbers[$num].expect("uninitialized x86 PCI INTx handler")
}, _stack_frame, {
let devices = INTX_DEVICES.lock();
for device in &*devices {
if device.pci_get_intx_status(true) {
device.pci_enable_intx(false);
log::info!("Device {} triggered a legacy interrupt", device.location);
let reader = device.intx_waker.lock();
match &*reader {
Some(waker) => waker.wake_by_ref(),
None => log::error!("Device doesn't have an interrupt waker!"),
}
}
}
EoiBehaviour::HandlerDidNotSendEoi
});
};
}
intx_handler!(pci_intx_handler_1, 0);
intx_handler!(pci_intx_handler_2, 1);
intx_handler!(pci_intx_handler_3, 2);
intx_handler!(pci_intx_handler_4, 3);
static HANDLERS: [InterruptHandler; 4] = [pci_intx_handler_1, pci_intx_handler_2, pci_intx_handler_3, pci_intx_handler_4];
// Ensures that a PCI INTx interrupt handler is registered for this interrupt number
fn init_intx_handler(int_num: InterruptNumber) -> Result<(), &'static str> {
let mut intx_numbers = INTX_NUMBERS.lock();
let mut slot = None;
for i in 0..4 {
if intx_numbers[i] == Some(int_num) {
return Ok((/* this interrupt number was already initialized. */));
} else if intx_numbers[i].is_none() {
slot = Some(i);
}
}
let slot = slot.ok_or("More than four different INTx numbers were encountered")?;
intx_numbers[slot] = Some(int_num);
core::mem::drop(intx_numbers);
let pci_intx_handler = HANDLERS[slot];
if let Err(existing_handler) = register_interrupt(int_num, pci_intx_handler) {
if existing_handler != (pci_intx_handler as _) {
return Err("Couldn't lazily set PCI INTx handler");
}
}
#[cfg(target_arch = "aarch64")] {
let int_dst = Some(cpu::bootstrap_cpu().unwrap());
let int_ctrl = SystemInterruptController::get()
.ok_or("SystemInterruptController was not yet initialized")?;
// route interrupt to bootstrap processor
int_ctrl.set_destination(int_num, int_dst, u8::MAX)?;
}
Ok(())
}
/// A PCI bus, which contains a list of PCI devices on that bus.
#[derive(Debug)]
pub struct PciBus {
/// The number identifier of this PCI bus.
pub bus_number: u8,
/// The list of devices attached to this PCI bus.
pub devices: Vec<PciDevice>,
}
/// Scans all PCI Buses (brute force iteration) to enumerate PCI Devices on each bus.
/// Initializes structures containing this information.
fn scan_pci() -> Result<Vec<PciBus>, &'static str> {
#[cfg(target_arch = "aarch64")]
PCI_CONFIG_SPACE.lock().try_call_once(|| {
let config = BOARD_CONFIG.pci_ecam;
let mapped = memory::map_frame_range(config.base_address, config.size_bytes, MMIO_FLAGS)?;
let config_space_u32_len = BOARD_CONFIG.pci_ecam.size_bytes / size_of::<u32>();
match mapped.into_borrowed_slice_mut(0, config_space_u32_len) {
Ok(bsm) => Ok(bsm),
Err((_, msg)) => Err(msg),
}
})?;
let mut buses: Vec<PciBus> = Vec::new();
for bus in 0..MAX_PCI_BUSES {
let bus = bus as u8;
let mut device_list: Vec<PciDevice> = Vec::new();
for slot in 0..MAX_SLOTS_PER_BUS {
let loc_zero = PciLocation { bus, slot, func: 0 };
// skip the whole slot if the vendor ID is 0xFFFF
if 0xFFFF == loc_zero.pci_read_16(PCI_VENDOR_ID) {
continue;
}
// If the header's MSB is set, then there are multiple functions for this device,
// and we should check all 8 of them to be sure.
// Otherwise, we only need to check the first function, because it's a single-function device.
let header_type = loc_zero.pci_read_8(PCI_HEADER_TYPE);
let functions_to_check = if header_type & 0x80 == 0x80 {
0..MAX_FUNCTIONS_PER_SLOT
} else {
0..1
};
for f in functions_to_check {
let location = PciLocation { bus, slot, func: f };
let vendor_id = location.pci_read_16(PCI_VENDOR_ID);
if vendor_id == 0xFFFF {
continue;
}
let device = PciDevice {
vendor_id,
device_id: location.pci_read_16(PCI_DEVICE_ID),
command: location.pci_read_16(PCI_COMMAND),
status: location.pci_read_16(PCI_STATUS),
revision_id: location.pci_read_8( PCI_REVISION_ID),
prog_if: location.pci_read_8( PCI_PROG_IF),
subclass: location.pci_read_8( PCI_SUBCLASS),
class: location.pci_read_8( PCI_CLASS),
cache_line_size: location.pci_read_8( PCI_CACHE_LINE_SIZE),
latency_timer: location.pci_read_8( PCI_LATENCY_TIMER),
header_type: location.pci_read_8( PCI_HEADER_TYPE),
bist: location.pci_read_8( PCI_BIST),
bars: [
location.pci_read_32(PCI_BAR0),
location.pci_read_32(PCI_BAR1),
location.pci_read_32(PCI_BAR2),
location.pci_read_32(PCI_BAR3),
location.pci_read_32(PCI_BAR4),
location.pci_read_32(PCI_BAR5),
],
int_pin: location.pci_read_8(PCI_INTERRUPT_PIN),
int_line: location.pci_read_8(PCI_INTERRUPT_LINE),
location,
intx_waker: Mutex::new(None),
};
// disable legacy interrupts initially
device.pci_enable_intx(false);
device_list.push(device);
}
}
if !device_list.is_empty() {
buses.push( PciBus {
bus_number: bus,
devices: device_list,
});
}
}
Ok(buses)
}
impl RegisterSpan {
const fn get_mask_and_bitshift(self) -> (u32, u8) {
match self {
FullDword => (0xffff_ffff, 0),
Word0 => (0x0000_ffff, 0),
Word1 => (0xffff_0000, 16),
Byte0 => (0x0000_00ff, 0),
Byte1 => (0x0000_ff00, 8),
Byte2 => (0x00ff_0000, 16),
Byte3 => (0xff00_0000, 24),
}
}
const fn width_in_bytes(self) -> usize {
match self {
FullDword => size_of::<u32>(),
Word0 => size_of::<u16>(),
Word1 => size_of::<u16>(),
Byte0 => size_of::<u8>(),
Byte1 => size_of::<u8>(),
Byte2 => size_of::<u8>(),
Byte3 => size_of::<u8>(),
}
}
}
/// The bus, slot, and function number of a given PCI device.
/// This offers methods for reading and writing the PCI config space.
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct PciLocation {
bus: u8,
slot: u8,
func: u8,
}
impl PciLocation {
pub fn bus(&self) -> u8 { self.bus }
pub fn slot(&self) -> u8 { self.slot }
pub fn function(&self) -> u8 { self.func }
/// Read the value of the given `register` in the PCI Configuration Space.
fn pci_read_raw(&self, register: PciRegister) -> u32 {
let PciRegister { index, span } = register;
let (mask, shift) = span.get_mask_and_bitshift();
const U32_BYTES: u32 = size_of::<u32>() as u32;
let dword_address = BASE_OFFSET
| ((self.bus as u32) << 16)
| ((self.slot as u32) << 11)
| ((self.func as u32) << 8)
| ((index as u32) * U32_BYTES);
let dword_value;
#[cfg(target_arch = "x86_64")] {
unsafe {
PCI_CONFIG_ADDRESS_PORT.lock().write(dword_address);
}
dword_value = PCI_CONFIG_DATA_PORT.lock().read();
}
#[cfg(target_arch = "aarch64")] {
let config_space = PCI_CONFIG_SPACE.lock();
let config_space = config_space.get()
.expect("PCI Config Space wasn't mapped yet");
let dword_index = (dword_address as usize) / size_of::<u32>();
dword_value = config_space[dword_index].read();
}
(dword_value & mask) >> shift
}
/// Read a 4-bytes register from the PCI Configuration Space.
///
/// Panics if the register isn't a [`FullDword`]
fn pci_read_32(&self, register: PciRegister) -> u32 {
let reg_width = register.span.width_in_bytes();
let output_width = size_of::<u32>();
assert_eq!(reg_width, output_width, "pci_read_32: register isn't 32-bit wide");
self.pci_read_raw(register)
}
/// Read a 2-bytes register from the PCI Configuration Space.
///
/// Panics if the register isn't a [`Word0`] / [`Word1`]
fn pci_read_16(&self, register: PciRegister) -> u16 {
let reg_width = register.span.width_in_bytes();
let output_width = size_of::<u16>();
assert_eq!(reg_width, output_width, "pci_read_16: register isn't 16-bit wide");
self.pci_read_raw(register) as _
}
/// Read a one-byte register from the PCI Configuration Space.
///
/// Panics if the register isn't a [`Byte0`] / [`Byte1`] / [`Byte2`] / [`Byte3`]
fn pci_read_8(&self, register: PciRegister) -> u8 {
let reg_width = register.span.width_in_bytes();
let output_width = size_of::<u8>();
assert_eq!(reg_width, output_width, "pci_read_16: register isn't 8-bit wide");
self.pci_read_raw(register) as _
}
/// Writes (part of) the given `value` to the given `register` in the PCI Configuration Space.
///
/// If the width of the given `register` is less than 4 bytes, this function will first
/// read the initial value from the `register` to ensure we don't ovewrite other
/// unrelated parts of the `u32` value.
fn pci_write_raw(&self, register: PciRegister, value: u32) {
let PciRegister { index, span } = register;
const U32_BYTES: u32 = size_of::<u32>() as u32;
let dword_address = BASE_OFFSET
| ((self.bus as u32) << 16)
| ((self.slot as u32) << 11)
| ((self.func as u32) << 8)
| ((index as u32) * U32_BYTES);
/// A macro that handles the required bitmasking/shifting to calculate the
/// final value that should actually be written to this `register`.
macro_rules! calc_value {
($read_initial_value:expr) => {
if matches!(span, FullDword) {
value
} else {
let mut dword = $read_initial_value;
let (mask, shift) = span.get_mask_and_bitshift();
dword &= !mask;
dword |= value << shift;
dword
}
}
}
#[cfg(target_arch = "x86_64")] {
unsafe {
PCI_CONFIG_ADDRESS_PORT.lock().write(dword_address);
}
let dword = calc_value!(PCI_CONFIG_DATA_PORT.lock().read());
unsafe {
PCI_CONFIG_DATA_PORT.lock().write(dword);
}
}
#[cfg(target_arch = "aarch64")] {
let mut config_space = PCI_CONFIG_SPACE.lock();
let config_space = config_space.get_mut()
.expect("PCI Config Space wasn't mapped yet");
let dword_index = (dword_address as usize) / size_of::<u32>();
let dword = calc_value!(config_space[dword_index].read());
config_space[dword_index].write(dword);
}
}
/// Write a 4-bytes register from the PCI Configuration Space.
///
/// Panics if the register isn't a [`FullDword`]
fn pci_write_32(&self, register: PciRegister, value: u32) {
let reg_width = register.span.width_in_bytes();
let output_width = size_of::<u32>();
assert_eq!(reg_width, output_width, "pci_write_32: register isn't 32-bit wide");
self.pci_write_raw(register, value)
}
/// Write a 2-bytes register from the PCI Configuration Space.
///
/// Panics if the register isn't a [`Word0`] / [`Word1`]
fn pci_write_16(&self, register: PciRegister, value: u16) {
let reg_width = register.span.width_in_bytes();
let output_width = size_of::<u16>();
assert_eq!(reg_width, output_width, "pci_write_16: register isn't 16-bit wide");
self.pci_write_raw(register, value as _)
}
/// Write a one-byte register from the PCI Configuration Space.
///
/// Panics if the register isn't a [`Byte0`] / [`Byte1`] / [`Byte2`] / [`Byte3`]
fn pci_write_8(&self, register: PciRegister, value: u8) {
let reg_width = register.span.width_in_bytes();
let output_width = size_of::<u8>();
assert_eq!(reg_width, output_width, "pci_write_16: register isn't 8-bit wide");
self.pci_write_raw(register, value as _)
}
/// Sets the PCI device's bit 3 in the command portion, which is apparently needed to activate DMA (??)
pub fn pci_set_command_bus_master_bit(&self) {
let value = self.pci_read_16(PCI_COMMAND);
trace!("pci_set_command_bus_master_bit: PciDevice: {}, read value: {:#x}", self, value);
self.pci_write_16(PCI_COMMAND, value | (1 << 2));
trace!("pci_set_command_bus_master_bit: PciDevice: {}, read value AFTER WRITE CMD: {:#x}",
self,
self.pci_read_16(PCI_COMMAND),
);
}
/// Sets the PCI device's command bit 10 to disable legacy interrupts
pub fn pci_set_intx_disable_bit(&self, bit: bool) {
let command = self.pci_read_16(PCI_COMMAND);
let new_value = match bit {
true => command | PCI_COMMAND_INT_DISABLED,
false => command & !PCI_COMMAND_INT_DISABLED,
};
self.pci_write_16(PCI_COMMAND, new_value);
}
/// Explores the PCI config space and returns address of requested capability, if present.
/// PCI capabilities are stored as a linked list in the PCI config space,
/// with each capability storing the pointer to the next capability right after its ID.
/// The function returns a None value if capabilities are not valid for this device
/// or if the requested capability is not present.
fn find_pci_capability(&self, pci_capability: PciCapability) -> Option<u8> {
let pci_capability = pci_capability as u8;
let status = self.pci_read_16(PCI_STATUS);
// capabilities are only valid if bit 4 of status register is set
const CAPABILITIES_VALID: u16 = 1 << 4;
if status & CAPABILITIES_VALID != 0 {
// retrieve the capabilities pointer from the pci config space
let capabilities = self.pci_read_8(PCI_CAPABILITIES);
// debug!("capabilities pointer: {:#X}", capabilities);
// mask the bottom 2 bits of the capabilities pointer to find the address of the first capability
let mut cap_addr = capabilities & 0xFC;
// the last capability will have its next pointer equal to zero
let final_capability = 0;
// iterate through the linked list of capabilities until the requested
// capability is found or the list reaches its end
while cap_addr != final_capability {
// the capability header is a 16 bit value which contains
// the current capability ID and the pointer to the next capability
// the id is the lower byte of the header
let cap_id_reg = PciRegister::from_offset(cap_addr, 1);
let cap_id = self.pci_read_8(cap_id_reg);
if cap_id == pci_capability {
debug!("Found capability: {:#X} at {:#X}", pci_capability, cap_addr);
return Some(cap_addr);
}
// find address of next capability which is the higher byte of the header
let next_cap_ptr_reg = PciRegister::from_offset(cap_addr + 1, 1);
cap_addr = self.pci_read_8(next_cap_ptr_reg);
}
}
None
}
}
impl fmt::Display for PciLocation {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "b{}.s{}.f{}", self.bus, self.slot, self.func)
}
}
impl fmt::Debug for PciLocation {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{self}")
}
}
/// Returned by [`PciDevice::modern_interrupt_support`]
pub struct ModernInterruptSupport {
/// `true` if this device supports MSI (Message Signaled Interrupts)
pub msi: bool,
/// `true` if this device supports MSI-X
pub msix: bool,
}
/// Contains information common to every type of PCI Device,
/// and offers functions for reading/writing to the PCI configuration space.
///
/// For more, see [this partial table](http://wiki.osdev.org/PCI#Class_Codes)
/// of `class`, `subclass`, and `prog_if` codes,
#[derive(Debug)]
pub struct PciDevice {
/// the bus, slot, and function number that locates this PCI device in the bus tree.
pub location: PciLocation,
/// The handling task for legacy PCI interrupts
pub intx_waker: Mutex<Option<Waker>>,
/// The class code, used to determine device type.
pub class: u8,
/// The subclass code, used to determine device type.
pub subclass: u8,
/// The programming interface of this PCI device, also used to determine device type.
pub prog_if: u8,
/// The six Base Address Registers (BARs)
pub bars: [u32; 6],
pub vendor_id: u16,
pub device_id: u16,
pub command: u16,
pub status: u16,
pub revision_id: u8,
pub cache_line_size: u8,
pub latency_timer: u8,
pub header_type: u8,
pub bist: u8,
pub int_pin: u8,
pub int_line: u8,
}
impl PciDevice {
/// Returns the base address of the memory region specified by the given `BAR`
/// (Base Address Register) for this PCI device.
///
/// # Argument
/// * `bar_index` must be between `0` and `5` inclusively, as each PCI device
/// can only have 6 BARs at the most.
///
/// Note that if the given `BAR` actually indicates it is part of a 64-bit address,
/// it will be used together with the BAR right above it (`bar + 1`), e.g., `BAR1:BAR0`.
/// If it is a 32-bit address, then only the given `BAR` will be accessed.
///
/// TODO: currently we assume the BAR represents a memory space (memory mapped I/O)
/// rather than I/O space like Port I/O. Obviously, this is not always the case.
/// Instead, we should return an enum specifying which kind of memory space the calculated base address is.
pub fn determine_mem_base(&self, bar_index: usize) -> Result<PhysicalAddress, &'static str> {
let mut bar = if let Some(bar_value) = self.bars.get(bar_index) {
*bar_value
} else {
return Err("BAR index must be between 0 and 5 inclusive");
};
// Check bits [2:1] of the bar to determine address length (64-bit or 32-bit)
let mem_base = if bar.get_bits(1..3) == BAR_ADDRESS_IS_64_BIT {
// Here: this BAR is the lower 32-bit part of a 64-bit address,
// so we need to access the next highest BAR to get the address's upper 32 bits.
let next_bar = *self.bars.get(bar_index + 1).ok_or("next highest BAR index is out of range")?;
// Clear the bottom 4 bits because it's a 16-byte aligned address
PhysicalAddress::new(*bar.set_bits(0..4, 0) as usize | ((next_bar as usize) << 32))
.ok_or("determine_mem_base(): [64-bit] BAR physical address was invalid")?
} else {
// Here: this BAR is the lower 32-bit part of a 64-bit address,
// so we need to access the next highest BAR to get the address's upper 32 bits.
// Also, clear the bottom 4 bits because it's a 16-byte aligned address.
PhysicalAddress::new(*bar.set_bits(0..4, 0) as usize)
.ok_or("determine_mem_base(): [32-bit] BAR physical address was invalid")?
};
Ok(mem_base)
}
/// Returns the size in bytes of the memory region specified by the given `BAR`
/// (Base Address Register) for this PCI device.
///
/// # Argument
/// * `bar_index` must be between `0` and `5` inclusively, as each PCI device
/// can only have 6 BARs at the most.
///
pub fn determine_mem_size(&self, bar_index: usize) -> u32 {
assert!(bar_index < 6);
// Here's what we do:
// (1) Write all `1`s to the specified BAR
// (2) Read that BAR value again
// (3) Mask the info bits (bits [3:0]) of the BAR value read in Step 2
// (4) Bitwise "not" (negate) that value, then add 1.
// The resulting value is the size of that BAR's memory region.
// (5) Restore the original value to that BAR
let bar_reg_def = PciRegister {
index: PCI_BAR0.index + (bar_index as u8),
span: FullDword,
};
let original_value = self.bars[bar_index];
self.pci_write_32(bar_reg_def, 0xFFFF_FFFF); // Step 1
let mut mem_size = self.pci_read_32(bar_reg_def); // Step 2
mem_size.set_bits(0..4, 0); // Step 3
mem_size = !(mem_size); // Step 4
mem_size += 1; // Step 4
self.pci_write_32(bar_reg_def, original_value); // Step 5
mem_size
}
/// Queries and returns whether this PCI device supports MSI and MSI-X interrupts.
pub fn modern_interrupt_support(&self) -> ModernInterruptSupport {
ModernInterruptSupport {
msi: self.find_pci_capability(PciCapability::Msi).is_some(),
msix: self.find_pci_capability(PciCapability::Msix).is_some(),
}
}
/// Enable MSI interrupts for a PCI device.
/// We assume the device only supports one MSI vector
/// and set the interrupt number and core id for that vector.
/// If the MSI capability is not supported then an error message is returned.
///
/// # Arguments
/// * `core_id`: core that interrupt will be routed to
/// * `int_num`: interrupt number to assign to the MSI vector
///
/// # Panics
///
/// This function panics if the MSI capability isn't aligned to 4 bytes
pub fn pci_enable_msi(&self, core_id: u8, int_num: u8) -> Result<(), &'static str> {
// find out if the device is msi capable
let cap_addr = self.find_pci_capability(PciCapability::Msi).ok_or("Device not MSI capable")?;
assert_eq!(cap_addr & 0b11, 0, "pci_enable_msi: Invalid MSI capability address alignment");
let msi_reg_index = cap_addr >> 2;
// offset in the capability space where the message address register is located
const MESSAGE_ADDRESS_REGISTER_OFFSET: u8 = 1 /* one dword */;
// the memory region is a constant defined for Intel cpus where MSI messages are written
// it should be written to bit 20 of the message address register
const MEMORY_REGION: u32 = 0x0FEE << 20;
// the core id tells which cpu the interrupt will be routed to
// it should be written to bit 12 of the message address register
let core = (core_id as u32) << 12;
// set the core the MSI will be sent to in the Message Address Register (Intel Arch SDM, vol3, 10.11)
let msg_addr_reg = PciRegister {
index: msi_reg_index + MESSAGE_ADDRESS_REGISTER_OFFSET,
span: FullDword,
};
self.pci_write_32(msg_addr_reg, MEMORY_REGION | core);
// offset in the capability space where the message data register is located
const MESSAGE_DATA_REGISTER_OFFSET: u8 = 3 /* dwords */;
// Set the interrupt number for the MSI in the Message Data Register
let msg_data_reg = PciRegister {
index: msi_reg_index + MESSAGE_DATA_REGISTER_OFFSET,
span: FullDword,
};
self.pci_write_32(msg_data_reg, int_num as u32);
// to enable the MSI capability, we need to set bit 0 of the message control register
const MSI_ENABLE: u16 = 1;
// enable MSI in the Message Control Register
// the message control register corresponds to bits [16:31] of the first dword
let msg_ctrl_reg = PciRegister { index: msi_reg_index, span: Word1 };
let mut ctrl = self.pci_read_16(msg_ctrl_reg);
ctrl |= MSI_ENABLE;
self.pci_write_16(msg_ctrl_reg, ctrl);
Ok(())
}
/// Enable MSI-X interrupts for a PCI device.
/// Only the enable bit is set and the remaining initialization steps of
/// setting the interrupt number and core id should be completed in the device driver.
pub fn pci_enable_msix(&self) -> Result<(), &'static str> {
// find out if the device is msi-x capable
let cap_addr = self.find_pci_capability(PciCapability::Msix).ok_or("Device not MSI-X capable")?;
assert_eq!(cap_addr & 0b11, 0, "pci_enable_msix: Invalid MSI-X capability address alignment");
let msix_reg_index = cap_addr >> 2;
// write to bit 15 of Message Control Register to enable MSI-X
const MSIX_ENABLE: u16 = 1 << 15;
// the message control register corresponds to bits [16:31] of the first dword
let msg_ctrl_reg = PciRegister { index: msix_reg_index, span: Word1 };
let mut ctrl = self.pci_read_16(msg_ctrl_reg);
ctrl |= MSIX_ENABLE;
self.pci_write_16(msg_ctrl_reg, ctrl);
// let ctrl = pci_read_16(msg_ctrl_reg, msix_reg_index);
// debug!("MSIX HEADER AFTER ENABLE: {:#X}", ctrl);
Ok(())
}
/// Returns the memory mapped msix vector table
///
/// - returns `Err("Device not MSI-X capable")` if the device doesn't have the MSI-X capability
/// - returns `Err("Invalid BAR content")` if the Base Address Register contains an invalid address
pub fn pci_mem_map_msix(&self, max_vectors: usize) -> Result<MsixVectorTable, &'static str> {
// retreive the address in the pci config space for the msi-x capability
let cap_addr = self.find_pci_capability(PciCapability::Msix).ok_or("Device not MSI-X capable")?;
assert_eq!(cap_addr & 0b11, 0, "pci_enable_msix: Invalid MSI-X capability address alignment");
let msix_reg_index = cap_addr >> 2;
// get physical address of vector table
const VECTOR_TABLE_OFFSET: u8 = 1;
let vector_table_reg = PciRegister {
index: msix_reg_index + VECTOR_TABLE_OFFSET,
span: FullDword,
};
let table_offset = self.pci_read_32(vector_table_reg);
let bar = table_offset & 0x7;
let offset = table_offset >> 3;
let addr = self.bars[bar as usize] + offset;
// find the memory base address and size of the area for the vector table
let mem_base = PhysicalAddress::new(addr as usize).ok_or("Invalid BAR content")?;
let mem_size_in_bytes = size_of::<MsixVectorEntry>() * max_vectors;
// debug!("msi-x vector table bar: {}, base_address: {:#X} and size: {} bytes", bar, mem_base, mem_size_in_bytes);
let msix_mapped_pages = map_frame_range(mem_base, mem_size_in_bytes, MMIO_FLAGS)?;
let vector_table = BorrowedSliceMappedPages::from_mut(msix_mapped_pages, 0, max_vectors)
.map_err(|(_mp, err)| err)?;
Ok(MsixVectorTable::new(vector_table))
}
/// Maps device memory specified by a Base Address Register.
///
/// # Arguments
/// * `bar_index`: index of the Base Address Register to use
pub fn pci_map_bar_mem(&self, bar_index: usize) -> Result<MappedPages, &'static str> {
let mem_base = self.determine_mem_base(bar_index)?;
let mem_size = self.determine_mem_size(bar_index);
map_frame_range(mem_base, mem_size as usize, MMIO_FLAGS)
}
/// Reads and returns this PCI device's INTx line and INTx pin registers.
///
/// Returns an error if this PCI device's INTx pin value is invalid (greater than 4).
pub fn pci_get_intx_info(&self) -> Result<(Option<u8>, Option<InterruptPin>), &'static str> {
let int_line = match self.pci_read_8(PCI_INTERRUPT_LINE) {
0xff => None,
other => Some(other),
};
let int_pin = match self.pci_read_8(PCI_INTERRUPT_PIN) {
0 => None,
1 => Some(InterruptPin::A),
2 => Some(InterruptPin::B),
3 => Some(InterruptPin::C),
4 => Some(InterruptPin::D),
_ => return Err("pci_get_interrupt_info: Invalid Register Value for Interrupt Pin"),
};
Ok((int_line, int_pin))
}
/// Enables/Disables legacy (INTx) interrupts for this device
pub fn pci_enable_intx(&self, enable: bool) {
self.pci_set_intx_disable_bit(!enable);
}
/// Checks that legacy interrupts are enabled in the command register.
pub fn pci_intx_enabled(&self) -> bool {
(self.pci_read_16(PCI_COMMAND) & PCI_COMMAND_INT_DISABLED) == 0
}
/// Reads and returns this PCI device's legacy interrupt status flag.
pub fn pci_get_intx_status(&self, check_enabled: bool) -> bool {
const PCI_STATUS_INT: u16 = 1 << 3;
let pending_interrupt = || (self.pci_read_16(PCI_STATUS) & PCI_STATUS_INT) != 0;
((!check_enabled) || self.pci_intx_enabled()) && pending_interrupt()
}
/// Sets up the given `waker` to be woken when this PCI device triggers a legacy interrupt (INTx).
///
/// Returns the previous interrupt waker for this device, if there was one.
pub fn set_intx_waker(&'static self, waker: Waker) -> Result<Option<Waker>, &'static str> {
// On x86, we don't yet support querying the ACPI tables to properly determine
// which interrupt numbers are used for legacy PCI interrupts.
// As a workaround, we lazily register these handlers when a driver
// calls this function, as by that time we're sure that
// the interrupt number in the device's config space is correct.
#[cfg(target_arch = "x86_64")] {
let int_num = match self.pci_get_intx_info() {
Ok((Some(irq), _pin)) => (irq + IRQ_BASE_OFFSET) as InterruptNumber,
_ => {
log::error!("Failed to get INTx info for PCI device {:?}", self);
return Err("PciDevice::set_intx_waker() failed to get INTx info");
}
};
init_intx_handler(int_num)?;
}
// On aarch64, we *do* know the interrupt numbers statically,
// but we do it lazily anyway for the sake of code clarity.
#[cfg(target_arch = "aarch64")] {
for int_num in BOARD_CONFIG.pci_intx {
init_intx_handler(int_num)?;
}
}
let mut handle = self.intx_waker.lock();
let prev_value = handle.replace(waker);
if prev_value.is_none() {
let mut intx_devices = INTX_DEVICES.lock();
intx_devices.push(self)
}
Ok(prev_value)
}
}
impl Deref for PciDevice {
type Target = PciLocation;
fn deref(&self) -> &PciLocation {
&self.location
}
}
impl DerefMut for PciDevice {
fn deref_mut(&mut self) -> &mut PciLocation {
&mut self.location
}
}
/// Lists the 2 possible PCI configuration space access mechanisms
/// that can be found from the LSB of the devices's BAR0
pub enum PciConfigSpaceAccessMechanism {
MemoryMapped = 0,
IoPort = 1,
}
/// A memory-mapped array of [`MsixVectorEntry`]
pub struct MsixVectorTable {
entries: BorrowedSliceMappedPages<MsixVectorEntry, Mutable>,
}
impl MsixVectorTable {
pub fn new(entries: BorrowedSliceMappedPages<MsixVectorEntry, Mutable>) -> Self {
Self { entries }
}
}
impl Deref for MsixVectorTable {
type Target = [MsixVectorEntry];
fn deref(&self) -> &Self::Target {
&self.entries
}
}
impl DerefMut for MsixVectorTable {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.entries
}
}
/// A single Message Signaled Interrupt entry.
///
/// This entry contains the interrupt's IRQ vector number
/// and the CPU to which the interrupt will be delivered.
#[derive(FromBytes)]
#[repr(C)]
pub struct MsixVectorEntry {
/// The lower portion of the address for the memory write transaction.
/// This part contains the CPU ID which the interrupt will be redirected to.
msg_lower_addr: Volatile<u32>,
/// The upper portion of the address for the memory write transaction.
msg_upper_addr: Volatile<u32>,
/// The data portion of the msi vector which contains the interrupt number.
msg_data: Volatile<u32>,
/// The control portion which contains the interrupt mask bit.
vector_control: Volatile<u32>,
}
impl MsixVectorEntry {
/// Sets interrupt destination & number for this entry and makes sure the
/// interrupt is unmasked (PCI Controller side).
pub fn init(&mut self, cpu_id: CpuId, int_num: InterruptNumber) {
// unmask the interrupt
self.vector_control.write(MSIX_UNMASK_INT);
let lower_addr = self.msg_lower_addr.read();
// set the CPU to which this interrupt will be delivered.
let dest_id = (cpu_id.into_u8() as u32) << MSIX_DEST_ID_SHIFT;
let address = lower_addr & !MSIX_ADDRESS_BITS;
self.msg_lower_addr.write(address | MSIX_INTERRUPT_REGION | dest_id);
// write interrupt number
#[allow(clippy::unnecessary_cast)]
self.msg_data.write(int_num as u32);
if false {
let control = self.vector_control.read();
debug!("Created MSI vector: control: {}, CPU: {}, int: {}", control, cpu_id, int_num);
}
}
}
/// A constant which indicates the region that is reserved for interrupt messages
const MSIX_INTERRUPT_REGION: u32 = 0xFEE << 20;
/// The location in the lower address register where the destination CPU ID is written
const MSIX_DEST_ID_SHIFT: u32 = 12;
/// The bits in the lower address register that need to be cleared and set
const MSIX_ADDRESS_BITS: u32 = 0xFFFF_FFF0;
/// Clear the vector control field to unmask the interrupt
const MSIX_UNMASK_INT: u32 = 0;