1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
#![allow(clippy::blocks_in_if_conditions)]
#![no_std]
#![feature(int_roundings)]
#![feature(let_chains)]
#[macro_use] extern crate alloc;
#[macro_use] extern crate log;
use core::{fmt, ops::{Deref, Range}};
use alloc::{
collections::{BTreeMap, btree_map, BTreeSet},
string::{String, ToString},
sync::{Arc, Weak}, vec::Vec
};
use spin::{Mutex, Once};
use xmas_elf::{ElfFile, sections::{SHF_ALLOC, SHF_EXECINSTR, SHF_TLS, SHF_WRITE, SectionData, ShType}, symbol_table::{Binding, Type}};
use memory::{MmiRef, MemoryManagementInfo, VirtualAddress, MappedPages, PteFlags, allocate_pages_by_bytes, allocate_frames_by_bytes_at, PageRange, allocate_pages_by_bytes_in_range};
use bootloader_modules::BootloaderModule;
use cow_arc::CowArc;
use rustc_demangle::demangle;
use qp_trie::Trie;
use fs_node::{FileOrDir, File, FileRef, DirRef};
use vfs_node::VFSDirectory;
use path::{Path, PathBuf};
use memfs::MemFile;
use hashbrown::HashMap;
use crate_metadata_serde::{CLS_SECTION_FLAG, CLS_SYMBOL_TYPE};
pub use local_storage_initializer::{TlsInitializer, TlsDataImage};
pub use crate_name_utils::*;
pub use crate_metadata::*;
pub mod parse_nano_core;
pub mod replace_nano_core_crates;
mod serde;
/// The name of the directory that contains all of the CrateNamespace files.
pub const NAMESPACES_DIRECTORY_NAME: &str = "namespaces";
/// The name of the directory that contains all other "extra_files" contents.
pub const EXTRA_FILES_DIRECTORY_NAME: &str = "extra_files";
const EXTRA_FILES_DIRECTORY_DELIMITER: char = '!';
/// The initial `CrateNamespace` that all kernel crates are added to by default.
static INITIAL_KERNEL_NAMESPACE: Once<Arc<CrateNamespace>> = Once::new();
/// Returns a reference to the default kernel namespace,
/// which must exist because it contains the initially-loaded kernel crates.
/// Returns None if the default namespace hasn't yet been initialized.
pub fn get_initial_kernel_namespace() -> Option<&'static Arc<CrateNamespace>> {
INITIAL_KERNEL_NAMESPACE.get()
}
/// Returns the top-level directory that contains all of the namespaces.
pub fn get_namespaces_directory() -> Option<DirRef> {
root::get_root().lock().get_dir(NAMESPACES_DIRECTORY_NAME)
}
/// The thread-local storage (TLS) area "image" that is used as the initial data for each `Task`.
/// When spawning a new task, the new task will create its own local TLS area
/// with this `TlsInitializer` as the initial data values.
///
/// # Implementation Notes/Shortcomings
/// Currently, a single system-wide `TlsInitializer` instance is shared across all namespaces.
/// In the future, each namespace should hold its own TLS sections in its TlsInitializer area.
///
/// However, this is quite complex because each namespace must be aware of the TLS sections
/// in BOTH its underlying recursive namespace AND its (multiple) "parent" namespace(s)
/// that recursively depend on it, since no two TLS sections can conflict (have the same offset).
///
/// Thus, we stick with a singleton `TlsInitializer` instance, which makes sense
/// because it behaves much like an allocator, in that it reserves space (index ranges) in the TLS area.
static TLS_INITIALIZER: Mutex<TlsInitializer> = Mutex::new(TlsInitializer::new());
/// Create a new application `CrateNamespace` that uses the default application directory
/// and is structured atop the given `recursive_namespace`.
/// If no `recursive_namespace` is provided, the default initial kernel namespace will be used.
///
/// # Return
/// The returned `CrateNamespace` will itself be empty, having no crates and no symbols in its map.
///
pub fn create_application_namespace(recursive_namespace: Option<Arc<CrateNamespace>>) -> Result<Arc<CrateNamespace>, &'static str> {
// (1) use the initial kernel CrateNamespace as the new app namespace's recursive namespace if none was provided.
let recursive_namespace = recursive_namespace
.or_else(|| get_initial_kernel_namespace().cloned())
.ok_or("initial kernel CrateNamespace not yet initialized")?;
// (2) get the directory where the default app namespace should have been populated when mod_mgmt was inited.
let default_app_namespace_name = CrateType::Application.default_namespace_name().to_string(); // this will be "_applications"
let default_app_namespace_dir = get_namespaces_directory()
.and_then(|ns_dir| ns_dir.lock().get_dir(&default_app_namespace_name))
.ok_or("Couldn't find the directory for the default application CrateNamespace")?;
// (3) create the actual new application CrateNamespace.
let new_app_namespace = Arc::new(CrateNamespace::new(
default_app_namespace_name,
NamespaceDir::new(default_app_namespace_dir),
Some(recursive_namespace),
));
Ok(new_app_namespace)
}
/// Initializes the module management system based on the bootloader-provided modules,
/// and creates and returns the default `CrateNamespace` for kernel crates.
pub fn init(
bootloader_modules: Vec<BootloaderModule>,
kernel_mmi: &mut MemoryManagementInfo
) -> Result<&'static Arc<CrateNamespace>, &'static str> {
let (_namespaces_dir, default_kernel_namespace_dir) = parse_bootloader_modules_into_files(bootloader_modules, kernel_mmi)?;
// Create the default CrateNamespace for kernel crates.
let name = default_kernel_namespace_dir.lock().get_name();
let default_namespace = CrateNamespace::new(name, default_kernel_namespace_dir, None);
Ok(INITIAL_KERNEL_NAMESPACE.call_once(|| Arc::new(default_namespace)))
}
/// Parses the list of bootloader-loaded modules, turning them into crate object files,
/// and placing them into namespace-specific directories according to their name prefix, e.g., "k#", "ksse#".
/// This function does not create any namespaces, it just populates the files and directories
/// such that namespaces can be created based on those files.
///
/// If a file does not have an expected crate prefix according to [`CrateType::from_module_name()`],
/// then it is treated as part of "extra_files"; see [`parse_extra_file()`] for more.
///
/// Returns a tuple of:
/// * the top-level root "namespaces" directory that contains all other namespace directories,
/// * the directory of the default kernel crate namespace.
fn parse_bootloader_modules_into_files(
bootloader_modules: Vec<BootloaderModule>,
kernel_mmi: &mut MemoryManagementInfo
) -> Result<(DirRef, NamespaceDir), &'static str> {
// create the top-level directory to hold all default namespaces
let namespaces_dir = VFSDirectory::create(NAMESPACES_DIRECTORY_NAME.to_string(), root::get_root())?;
// create the top-level directory to hold all extra files
let extra_files_dir = VFSDirectory::create(EXTRA_FILES_DIRECTORY_NAME.to_string(), root::get_root())?;
// a map that associates a prefix string (e.g., "sse" in "ksse#crate.o") to a namespace directory of object files
let mut prefix_map: BTreeMap<String, NamespaceDir> = BTreeMap::new();
// Closure to create the directory for a new namespace.
let create_dir = |dir_name: &str| -> Result<NamespaceDir, &'static str> {
VFSDirectory::create(dir_name.to_string(), &namespaces_dir).map(NamespaceDir)
};
let mut process_module = |name: &str, size, pages| -> Result<_, &'static str> {
let (crate_type, prefix, file_name) = if let Ok((c, p, f)) = CrateType::from_module_name(name) {
(c, p, f)
} else {
parse_extra_file(name, size, pages, Arc::clone(&extra_files_dir))?;
return Ok(());
};
let dir_name = format!("{}{}", prefix, crate_type.default_namespace_name());
// debug!("Module: {:?}, size {}, mp: {:?}", name, size, pages);
let create_file = |dir: &DirRef| {
MemFile::from_mapped_pages(pages, file_name.to_string(), size, dir)
};
// Get the existing (or create a new) namespace directory corresponding to the given directory name.
let _new_file = match prefix_map.entry(dir_name.clone()) {
btree_map::Entry::Vacant(vacant) => create_file( vacant.insert(create_dir(&dir_name)?) )?,
btree_map::Entry::Occupied(occ) => create_file( occ.get() )?,
};
Ok(())
};
for m in bootloader_modules {
let frames = allocate_frames_by_bytes_at(m.start_address(), m.size_in_bytes())
.map_err(|_e| "Failed to allocate frames for bootloader module")?;
let pages = allocate_pages_by_bytes(m.size_in_bytes())
.ok_or("Couldn't allocate virtual pages for bootloader module")?;
let mp = kernel_mmi.page_table.map_allocated_pages_to(
pages,
frames,
// we never need to write to bootloader-provided modules
PteFlags::new().valid(true),
)?;
let name = m.name();
let size = m.size_in_bytes();
if name == "modules.cpio.lz4" {
// The bootloader modules were compressed/archived into one large module at build time,
// so we must extract them here.
#[cfg(feature = "extract_boot_modules")]
{
let bytes = mp.as_slice(0, size)?;
let tar = lz4_flex::block::decompress_size_prepended(bytes)
.map_err(|_e| "lz4 decompression of bootloader modules failed")?;
/*
* TODO: avoid using tons of heap space for decompression by
* allocating a separate MappedPages instance and using `decompress_into()`.
* We can determined the uncompressed size ahead of time using the following:
*/
let _uncompressed_size = u32::from_le_bytes([bytes[0], bytes[1], bytes[2], bytes[3]]) as usize;
for entry in cpio_reader::iter_files(&tar) {
let name = entry.name();
let bytes = entry.file();
let size = bytes.len();
let mut mp = {
let flags = PteFlags::new().valid(true).writable(true);
let allocated_pages = allocate_pages_by_bytes(size).ok_or("couldn't allocate pages")?;
kernel_mmi.page_table.map_allocated_pages(allocated_pages, flags)?
};
{
let slice = mp.as_slice_mut(0, size)?;
slice.copy_from_slice(bytes);
}
process_module(name, size, mp)?;
}
continue;
}
#[cfg(not(feature = "extract_boot_modules"))]
{
let err_msg = "BUG: found `modules.cpio.lz4` bootloader module, but the `extract_boot_modules` feature was disabled!";
error!("{}", err_msg);
return Err(err_msg);
}
}
process_module(name, size, mp)?;
}
debug!("Created namespace directories: {:?}", prefix_map.keys().map(|s| &**s).collect::<Vec<&str>>().join(", "));
Ok((
namespaces_dir,
prefix_map.remove(CrateType::Kernel.default_namespace_name()).ok_or("BUG: no default namespace found")?,
))
}
/// Adds the given extra file to the directory of extra files
///
/// See the top-level Makefile target "extra_files" for an explanation of how these work.
/// Basically, they are arbitrary files that are included by the bootloader as modules
/// (files that exist as areas of pre-loaded memory).
///
/// Their file paths are encoded by flattening directory hierarchies into a the file name,
/// using `'!'` (exclamation marks) to replace the directory delimiter `'/'`.
///
/// Thus, for example, a file named `"foo!bar!me!test.txt"` will be placed at the path
/// `/extra_files/foo/bar/me/test.txt`.
fn parse_extra_file(
extra_file_name: &str,
extra_file_size: usize,
extra_file_mp: MappedPages,
extra_files_dir: DirRef
) -> Result<FileRef, &'static str> {
let mut file_name = extra_file_name;
let mut parent_dir = extra_files_dir;
let mut iter = extra_file_name.split(EXTRA_FILES_DIRECTORY_DELIMITER).peekable();
while let Some(path_component) = iter.next() {
if iter.peek().is_some() {
let existing_dir = parent_dir.lock().get_dir(path_component);
parent_dir = existing_dir
.or_else(|| VFSDirectory::create(path_component.to_string(), &parent_dir).ok())
.ok_or_else(|| {
error!("Failed to get or create directory {:?} for extra file {:?}", path_component, extra_file_name);
"Failed to get or create directory for extra file"
})?;
} else {
file_name = path_component;
break;
}
}
MemFile::from_mapped_pages(
extra_file_mp,
file_name.to_string(),
extra_file_size,
&parent_dir
)
}
/// A "symbol map" from a fully-qualified demangled symbol String
/// to weak reference to a `LoadedSection`.
/// This is used for relocations, and for looking up function names.
pub type SymbolMap = Trie<StrRef, WeakSectionRef>;
/// A wrapper around a `Directory` reference that offers special convenience functions
/// for getting and inserting crate object files into a directory.
///
/// Auto-derefs into a `DirRef`.
#[derive(Clone)]
pub struct NamespaceDir(DirRef);
impl Deref for NamespaceDir {
type Target = DirRef;
fn deref(&self) -> &DirRef {
&self.0
}
}
impl fmt::Debug for NamespaceDir {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(locked_dir) = self.0.try_lock() {
write!(f, "{:?}", locked_dir.get_absolute_path())
} else {
write!(f, "<Locked>")
}
}
}
impl NamespaceDir {
/// Creates a new `NamespaceDir` that wraps the given `DirRef`.
pub fn new(dir: DirRef) -> NamespaceDir {
NamespaceDir(dir)
}
/// Finds the single file in this directory whose name starts with the given `prefix`.
///
/// # Return
/// If a single file matches, then that file is returned.
/// Otherwise, if no files or multiple files match, then `None` is returned.
pub fn get_file_starting_with(&self, prefix: &str) -> Option<FileRef> {
let mut matching_files = self.get_files_starting_with(prefix).into_iter();
matching_files.next()
.filter(|_| matching_files.next().is_none()) // ensure single element
}
/// Returns the list of files in this Directory whose name starts with the given `prefix`.
pub fn get_files_starting_with(&self, prefix: &str) -> Vec<FileRef> {
let dir_locked = self.0.lock();
let children = dir_locked.list();
children.into_iter().filter_map(|name| {
if name.starts_with(prefix) {
dir_locked.get_file(&name)
} else {
None
}
}).collect()
}
/// Returns the list of file and directory names in this Directory whose name start with the given `prefix`.
pub fn get_file_and_dir_names_starting_with(&self, prefix: &str) -> Vec<String> {
let children = { self.0.lock().list() };
children.into_iter()
.filter(|name| name.starts_with(prefix))
.collect()
}
/// Gets the given object file based on its crate name prefix.
///
/// # Arguments
/// * `crate_object_file_name`: the name of the object file to be returned,
/// with or without a preceding `CrateType` prefix.
///
/// # Examples
/// * The name "k#keyboard-36be916209949cef.o" will look for and return the file "keyboard-36be916209949cef.o".
/// * The name "keyboard-36be916209949cef.o" will look for and return the file "keyboard-36be916209949cef.o".
/// * The name "a#ps.o" will look for and return the file "ps.o".
pub fn get_crate_object_file(&self, crate_module_file_name: &str) -> Option<FileRef> {
let (_crate_type, _prefix, objfilename) = CrateType::from_module_name(crate_module_file_name).ok()?;
self.0.lock().get_file(objfilename)
}
/// Insert the given crate object file based on its crate type prefix.
///
/// # Arguments
/// * `crate_object_file_name`: the name of the object file to be inserted,
/// with a preceding `CrateType` prefix.
/// * `content`: the bytes that will be written into the file.
///
/// # Examples
/// * The file "k#keyboard-36be916209949cef.o" will be written to "./keyboard-36be916209949cef.o".
/// * The file "a#ps.o" will be placed into "./ps.o".
pub fn write_crate_object_file(&self, crate_object_file_name: &str, content: &[u8]) -> Result<FileRef, &'static str> {
let (_crate_type, _prefix, objfilename) = CrateType::from_module_name(crate_object_file_name)?;
let cfile = MemFile::create(String::from(objfilename), &self.0)?;
cfile.lock().write_at(content, 0)?;
Ok(cfile)
}
}
/// A type that can be converted into a crate object file.
///
/// We use an enum rather than implement `TryInto` because we need additional information
/// to resolve a `Prefix`, namely the `CrateNamespace` in which to search for the prefix.
pub enum IntoCrateObjectFile {
/// A direct reference to the crate object file. This will be used as-is.
File(FileRef),
/// An absolute path that points to the crate object file.
AbsolutePath(PathBuf),
/// A string prefix that will be used to search for the crate object file in the namespace.
/// This must be able to uniquely identify a single crate object file in the namespace directory (recursively searched).
Prefix(String),
}
impl fmt::Debug for IntoCrateObjectFile {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut dbg = f.debug_struct("IntoCrateObjectFile");
match self {
Self::File(object_file) => dbg.field("File", &object_file.try_lock()
.map(|f| f.get_absolute_path())
.unwrap_or_else(|| "<Locked>".to_string())
),
Self::AbsolutePath(p) => dbg.field("AbsolutePath", p),
Self::Prefix(prefix) => dbg.field("Prefix", prefix),
};
dbg.finish()
}
}
/// An application crate that has been loaded into a `CrateNamespace`.
///
/// This type auto-derefs into the application's `StrongCrateRef`.
///
/// When dropped, the application crate will be removed
/// from the `CrateNamespace` into which it was originally loaded.
pub struct AppCrateRef {
crate_ref: StrongCrateRef,
namespace: Arc<CrateNamespace>,
}
impl Deref for AppCrateRef {
type Target = StrongCrateRef;
fn deref(&self) -> &StrongCrateRef {
&self.crate_ref
}
}
impl Drop for AppCrateRef {
fn drop(&mut self) {
// trace!("### Dropping AppCrateRef {:?} from namespace {:?}", self.crate_ref, self.namespace.name());
let crate_locked = self.crate_ref.lock_as_ref();
// First, remove the actual crate from the namespace.
if let Some(_removed_app_crate) = self.namespace.crate_tree().lock().remove(&crate_locked.crate_name) {
// Second, remove all of the crate's global symbols from the namespace's symbol map.
let mut symbol_map = self.namespace.symbol_map().lock();
for sec_to_remove in crate_locked.global_sections_iter() {
match symbol_map.remove(&sec_to_remove.name) {
Some(_removed) => {
// trace!("Removed symbol {}: {:?}", sec_to_remove.name, _removed.upgrade());
}
None => {
error!("NOTE: couldn't find old symbol {:?} in the old crate {:?} to remove from namespace {:?}.", sec_to_remove.name, crate_locked.crate_name, self.namespace.name());
}
}
}
} else {
error!("BUG: the dropped AppCrateRef {:?} could not be removed from namespace {:?}", self.crate_ref, self.namespace.name());
}
}
}
/// This struct represents a namespace of crates and their "global" (publicly-visible) symbols.
/// A crate namespace struct is basically a container around many crates
/// that have all been loaded and linked against each other,
/// completely separate and in isolation from any other crate namespace
/// (although a given crate may be shared across multiple namespaces).
///
/// Each `CrateNamespace` can be treated as a separate OS personality,
/// but are significantly more efficient than library OS-style personalities.
/// A `CrateNamespace` is also useful to create a process (task group) abstraction.
///
/// `CrateNamespace`s can also optionally be recursive.
/// For example, a namespace that holds just application crates and symbols
/// can recursively rely upon (link against) the crates and symbols in a lower-level namespace
/// that contains kernel crates and symbols.
pub struct CrateNamespace {
/// An identifier for this namespace, just for convenience.
name: String,
/// The directory containing all crate object files owned by this namespace.
/// When this namespace is looking for a missing symbol or crate,
/// it searches in this directory first.
dir: NamespaceDir,
/// The list of all the crates loaded into this namespace,
/// stored as a map in which the crate's string name
/// is the key that maps to the value, a strong reference to a crate.
/// It is a strong reference because a crate must not be removed
/// as long as it is part of any namespace,
/// and a single crate can be part of multiple namespaces at once.
/// For example, the "core" (Rust core library) crate is essentially
/// part of every single namespace, simply because most other crates rely upon it.
crate_tree: Mutex<Trie<StrRef, StrongCrateRef>>,
/// The "system map" of all symbols that are present in all of the crates in this `CrateNamespace`.
/// Maps a fully-qualified symbol name string to a corresponding `LoadedSection`,
/// which is guaranteed to be part of one of the crates in this `CrateNamespace`.
/// Symbols declared as "no_mangle" will appear in the map with no crate prefix, as expected.
symbol_map: Mutex<SymbolMap>,
/// The `CrateNamespace` that lies below this namespace, and can also be used by this namespace
/// to resolve symbols and load crates that are relied on by other crates in this namespace.
/// So, for example, if this namespace contains a set of application crates,
/// its `recursive_namespace` could contain the set of kernel crates that these application crates rely on.
recursive_namespace: Option<Arc<CrateNamespace>>,
/// The thread-local storage (TLS) area "image" that is used as the initial data for each `Task`
/// that is spawned and runs within this `CrateNamespace`.
/// When spawning a new task, the new task will create its own local TLS area
/// with this `tls_initializer` as the local data.
///
/// NOTE: this is currently a global system-wide singleton. See the static [`static@TLS_INITIALIZER`] for more.
tls_initializer: &'static Mutex<TlsInitializer>,
/// A setting that toggles whether to ignore hash differences in symbols when resolving a dependency.
/// For example, if `true`, the symbol `my_crate::foo::h123` will be used to satisfy a dependency
/// on any other `my_crate::foo::*` regardless of hash value.
/// Fuzzy matching should only be successful if there is just a single matching symbol;
/// if there are multiple matches (e.g., `my_crate::foo::h456` and `my_crate::foo::h789` both exist),
/// then the dependency should fail to be resolved.
///
/// This is a potentially dangerous setting because it overrides the compiler-chosen dependency links.
/// Thus, it is false by default, and should only be enabled with expert knowledge,
/// ideally only temporarily in order to manually load a given crate.
fuzzy_symbol_matching: bool,
}
impl CrateNamespace {
/// Creates a new `CrateNamespace` that is completely empty (no loaded crates).
/// # Arguments
/// * `name`: the name of this `CrateNamespace`, used only for convenience purposes.
/// * `dir`: the directory of crate object files for this namespace.
/// * `recursive_namespace`: another `CrateNamespace` that can optionally be used
/// to recursively resolve missing crates/symbols.
pub fn new(name: String, dir: NamespaceDir, recursive_namespace: Option<Arc<CrateNamespace>>) -> CrateNamespace {
CrateNamespace {
name,
dir,
recursive_namespace,
tls_initializer: &TLS_INITIALIZER,
crate_tree: Mutex::new(Trie::new()),
symbol_map: Mutex::new(SymbolMap::new()),
fuzzy_symbol_matching: false,
}
}
/// Returns the name of this `CrateNamespace`, which is just used for debugging purposes.
pub fn name(&self) -> &str {
&self.name
}
/// Returns the directory that this `CrateNamespace` is based on.
pub fn dir(&self) -> &NamespaceDir {
&self.dir
}
/// Returns the recursive namespace that this `CrateNamespace` is built atop,
/// if one exists.
pub fn recursive_namespace(&self) -> Option<&Arc<CrateNamespace>> {
self.recursive_namespace.as_ref()
}
/// Returns a new copy of this namespace's initial TLS area,
/// which can be used as the initial TLS area data image for a new task.
pub fn get_tls_initializer_data(&self) -> TlsDataImage {
self.tls_initializer.lock().get_data()
}
#[doc(hidden)]
pub fn crate_tree(&self) -> &Mutex<Trie<StrRef, StrongCrateRef>> {
&self.crate_tree
}
#[doc(hidden)]
pub fn symbol_map(&self) -> &Mutex<SymbolMap> {
&self.symbol_map
}
#[doc(hidden)]
pub fn enable_fuzzy_symbol_matching(&mut self) {
self.fuzzy_symbol_matching = true;
}
#[doc(hidden)]
pub fn disable_fuzzy_symbol_matching(&mut self) {
self.fuzzy_symbol_matching = false;
}
/// Returns a list of all of the crate names currently loaded into this `CrateNamespace`,
/// including all crates in any recursive namespaces as well if `recursive` is `true`.
/// This is a slow method mostly for debugging, since it allocates a new vector of crate names.
pub fn crate_names(&self, recursive: bool) -> Vec<StrRef> {
let mut crates: Vec<StrRef> = self.crate_tree.lock().keys().cloned().collect();
if recursive {
if let Some(mut crates_recursive) = self.recursive_namespace.as_ref().map(|r_ns| r_ns.crate_names(recursive)) {
crates.append(&mut crates_recursive);
}
}
crates
}
/// Iterates over all crates in this namespace and calls the given function `f` on each crate.
/// If `recursive` is true, crates in recursive namespaces are included in the iteration as well.
///
/// The function `f` is called with two arguments: the name of the crate, and a reference to the crate.
/// The function `f` must return a boolean value that indicates whether to continue iterating;
/// if `true`, the iteration will continue, if `false`, the iteration will stop.
pub fn for_each_crate<F>(
&self,
recursive: bool,
mut f: F
) where F: FnMut(&str, &StrongCrateRef) -> bool {
for (crate_name, crate_ref) in self.crate_tree.lock().iter() {
let keep_going = f(crate_name.as_str(), crate_ref);
if !keep_going {
return;
}
}
if recursive {
if let Some(ref r_ns) = self.recursive_namespace {
r_ns.for_each_crate(recursive, f);
}
}
}
/// Acquires the lock on this `CrateNamespace`'s crate list and returns the crate
/// that matches the given `crate_name`, if it exists in this namespace.
/// If it does not exist in this namespace, then the recursive namespace is searched as well.
///
/// # Important note about Return value
/// Returns a `StrongCrateReference` that **has not** been marked as a shared crate reference,
/// so if the caller wants to keep the returned `StrongCrateRef` as a shared crate
/// that jointly exists in another namespace, they should invoke the
/// [`CowArc::clone()`] function on the returned value.
pub fn get_crate(&self, crate_name: &str) -> Option<StrongCrateRef> {
self.crate_tree.lock().get(crate_name.as_bytes())
.map(CowArc::clone_shallow)
.or_else(|| self.recursive_namespace.as_ref().and_then(|r_ns| r_ns.get_crate(crate_name)))
}
/// Acquires the lock on this `CrateNamespace`'s crate list and returns the crate
/// that matches the given `crate_name`, if it exists in this namespace.
/// If it does not exist in this namespace, then the recursive namespace is searched as well.
///
/// This function is similar to the [`get_crate`](#method.get_crate) method,
/// but it also returns the `CrateNamespace` in which the crate was found.
/// It is an associated function rather than a method so it can operate on `Arc<CrateNamespace>`s.
///
/// # Important note about Return value
/// Returns a `StrongCrateReference` that **has not** been marked as a shared crate reference,
/// so if the caller wants to keep the returned `StrongCrateRef` as a shared crate
/// that jointly exists in another namespace, they should invoke the
/// [`CowArc::clone()`] function on the returned value.
pub fn get_crate_and_namespace<'n>(
namespace: &'n Arc<CrateNamespace>,
crate_name: &str
) -> Option<(StrongCrateRef, &'n Arc<CrateNamespace>)> {
namespace.crate_tree.lock().get(crate_name.as_bytes())
.map(|c| (CowArc::clone_shallow(c), namespace))
.or_else(|| namespace.recursive_namespace.as_ref().and_then(|r_ns| Self::get_crate_and_namespace(r_ns, crate_name)))
}
/// Finds the `LoadedCrate`s whose names start with the given `crate_name_prefix`.
///
/// # Return
/// Returns a list of matching crates, in the form of a tuple containing the crate's name,
/// a shallow-cloned reference to the crate, and a reference to the namespace in which the matching crate was found.
/// If you want to add the returned crate to another namespace,
/// you MUST fully `clone()` the returned crate reference in order to mark that crate as shared across namespaces.
///
/// # Important Usage Note
/// To avoid greedily matching more crates than expected, you may wish to end the `crate_name_prefix` with "`-`".
/// This may provide results more in line with the caller's expectations; see the last example below about a trailing "`-`".
/// This works because the delimiter between a crate name and its trailing hash value is "`-`".
///
/// # Example
/// * This `CrateNamespace` contains the crates `my_crate-843a613894da0c24` and
/// `my_crate_new-933a635894ce0f12`.
/// Calling `get_crates_starting_with("my_crate")` will return both crates,
pub fn get_crates_starting_with<'n>(
namespace: &'n Arc<CrateNamespace>,
crate_name_prefix: &str
) -> Vec<(StrRef, StrongCrateRef, &'n Arc<CrateNamespace>)> {
// First, we make a list of matching crates in this namespace.
let crates = namespace.crate_tree.lock();
let mut crates_in_this_namespace = crates.iter_prefix(crate_name_prefix.as_bytes())
.map(|(key, val)| (key.clone(), val.clone_shallow(), namespace))
.collect::<Vec<_>>();
// Second, we make a similar list for the recursive namespace.
let mut crates_in_recursive_namespace = namespace.recursive_namespace.as_ref()
.map(|r_ns| Self::get_crates_starting_with(r_ns, crate_name_prefix))
.unwrap_or_default();
// Third, we combine the lists into one list that spans all namespaces.
crates_in_this_namespace.append(&mut crates_in_recursive_namespace);
crates_in_this_namespace
}
/// Finds the `LoadedCrate` whose name starts with the given `crate_name_prefix`,
/// *if and only if* there is a single matching crate in this namespace or any of its recursive namespaces.
/// This is a convenience wrapper around the [`get_crates_starting_with()`](#method.get_crates_starting_with) method.
///
/// # Return
/// Returns a tuple containing the crate's name, a shallow-cloned reference to the crate,
/// and a reference to the namespace in which the matching crate was found.
/// If you want to add the returned crate to another namespace,
/// you MUST fully `clone()` the returned crate reference in order to mark that crate as shared across namespaces.
///
/// # Important Usage Note
/// To avoid greedily matching more crates than expected, you may wish to end the `crate_name_prefix` with "`-`".
/// This may provide results more in line with the caller's expectations; see the last example below about a trailing "`-`".
/// This works because the delimiter between a crate name and its trailing hash value is "`-`".
///
/// # Example
/// * This `CrateNamespace` contains the crates `my_crate-843a613894da0c24` and
/// `my_crate_new-933a635894ce0f12`.
/// Calling `get_crate_starting_with("my_crate")` will return None,
/// because it will match both `my_crate` and `my_crate_new`.
/// To match only `my_crate`, call this function as `get_crate_starting_with("my_crate-")`.
pub fn get_crate_starting_with<'n>(
namespace: &'n Arc<CrateNamespace>,
crate_name_prefix: &str
) -> Option<(StrRef, StrongCrateRef, &'n Arc<CrateNamespace>)> {
let mut crates_iter = Self::get_crates_starting_with(namespace, crate_name_prefix).into_iter();
crates_iter.next().filter(|_| crates_iter.next().is_none()) // ensure single element
}
/// Like [`get_crates_starting_with()`](#method.get_crates_starting_with),
/// but for crate *object file*s instead of loaded crates.
///
/// Returns a list of matching object files and the namespace in which they were found,
/// inclusive of recursive namespaces.
pub fn get_crate_object_files_starting_with<'n>(
namespace: &'n Arc<CrateNamespace>,
file_name_prefix: &str
) -> Vec<(FileRef, &'n Arc<CrateNamespace>)> {
// First, we make a list of matching files in this namespace.
let mut files = namespace.dir
.get_files_starting_with(file_name_prefix)
.into_iter()
.map(|f| (f, namespace))
.collect::<Vec<_>>();
// Second, we make a similar list for the recursive namespace.
let mut files_in_recursive_namespace = namespace.recursive_namespace.as_ref()
.map(|r_ns| Self::get_crate_object_files_starting_with(r_ns, file_name_prefix))
.unwrap_or_default();
// Third, we combine the lists into one list that spans all namespaces.
files.append(&mut files_in_recursive_namespace);
files
}
/// Like [`get_crate_starting_with()`](#method.get_crate_starting_with),
/// but for crate *object file*s instead of loaded crates.
///
/// Returns the matching object file and the namespace in which it was found,
/// if and only if there was a single match (inclusive of recursive namespaces).
pub fn get_crate_object_file_starting_with<'n>(
namespace: &'n Arc<CrateNamespace>,
file_name_prefix: &str
) -> Option<(FileRef, &'n Arc<CrateNamespace>)> {
let mut files_iter = Self::get_crate_object_files_starting_with(namespace, file_name_prefix).into_iter();
files_iter.next().filter(|_| files_iter.next().is_none()) // ensure single element
}
/// Same as `get_crate_object_files_starting_with()`,
/// but is a method instead of an associated function,
/// and also returns `&CrateNamespace` instead of `&Arc<CrateNamespace>`.
///
/// This is only necessary because I can't figure out how to make a generic function
/// that accepts and returns either `&CrateNamespace` or `&Arc<CrateNamespace>`.
pub fn method_get_crate_object_files_starting_with(
&self,
file_name_prefix: &str
) -> Vec<(FileRef, &CrateNamespace)> {
// First, we make a list of matching files in this namespace.
let mut files = self.dir
.get_files_starting_with(file_name_prefix)
.into_iter()
.map(|f| (f, self))
.collect::<Vec<_>>();
// Second, we make a similar list for the recursive namespace.
let mut files_in_recursive_namespace = self.recursive_namespace.as_ref()
.map(|r_ns| r_ns.method_get_crate_object_files_starting_with(file_name_prefix))
.unwrap_or_default();
// Third, we combine the lists into one list that spans all namespaces.
files.append(&mut files_in_recursive_namespace);
files
}
/// Same as `get_crate_object_file_starting_with()`,
/// but is a method instead of an associated function,
/// and also returns `&CrateNamespace` instead of `&Arc<CrateNamespace>`.
///
/// This is only necessary because I can't figure out how to make a generic function
/// that accepts and returns either `&CrateNamespace` or `&Arc<CrateNamespace>`.
pub fn method_get_crate_object_file_starting_with(
&self,
file_name_prefix: &str
) -> Option<(FileRef, &CrateNamespace)> {
let mut files_iter = self.method_get_crate_object_files_starting_with(file_name_prefix).into_iter();
files_iter.next().filter(|_| files_iter.next().is_none()) // ensure single element
}
/// Loads the specified application crate into this `CrateNamespace`, allowing it to be run.
///
/// The new application crate's public symbols are added to this `CrateNamespace`'s symbol map,
/// allowing other crates in this namespace to depend upon it.
///
/// Application crates are added to the CrateNamespace just like kernel crates,
/// so to load an application crate multiple times to spawn multiple instances of it,
/// you can create a new top-level namespace to hold that application crate.
///
/// Returns a Result containing the newly-loaded application crate itself.
pub fn load_crate_as_application(
namespace: &Arc<CrateNamespace>,
crate_object_file: &FileRef,
kernel_mmi_ref: &MmiRef,
verbose_log: bool
) -> Result<AppCrateRef, &'static str> {
debug!("load_crate_as_application(): trying to load application crate at {:?}", crate_object_file.lock().get_absolute_path());
// Don't use a backup namespace when loading applications;
// we must be able to find all symbols in only this namespace and its backing recursive namespaces.
let new_crate_ref = namespace.load_crate_internal(crate_object_file, None, kernel_mmi_ref, verbose_log)?;
{
let new_crate = new_crate_ref.lock_as_ref();
let _new_syms = namespace.add_symbols(new_crate.sections.values(), verbose_log);
namespace.crate_tree.lock().insert(new_crate.crate_name.clone(), CowArc::clone_shallow(&new_crate_ref));
info!("loaded new application crate: {:?}, num sections: {}, added {} new symbols", new_crate.crate_name, new_crate.sections.len(), _new_syms);
}
Ok(AppCrateRef {
crate_ref: new_crate_ref,
namespace: Arc::clone(namespace),
})
}
/// Loads the specified crate into memory, allowing it to be invoked.
/// Returns a Result containing the number of symbols that were added to the symbol map
/// as a result of loading this crate.
///
/// # Arguments
/// * `crate_object_file`: the crate object file that will be loaded into this `CrateNamespace`.
/// * `temp_backup_namespace`: the `CrateNamespace` that should be searched for missing symbols
/// (for relocations) if a symbol cannot be found in this `CrateNamespace`.
/// If `temp_backup_namespace` is `None`, then no other namespace will be searched,
/// and any missing symbols will return an `Err`.
/// * `kernel_mmi_ref`: a mutable reference to the kernel's `MemoryManagementInfo`.
/// * `verbose_log`: a boolean value whether to enable verbose_log logging of crate loading actions.
pub fn load_crate(
&self,
crate_object_file: &FileRef,
temp_backup_namespace: Option<&CrateNamespace>,
kernel_mmi_ref: &MmiRef,
verbose_log: bool
) -> Result<(StrongCrateRef, usize), &'static str> {
#[cfg(not(loscd_eval))]
debug!("load_crate: trying to load crate at {:?}", crate_object_file.lock().get_absolute_path());
let new_crate_ref = self.load_crate_internal(crate_object_file, temp_backup_namespace, kernel_mmi_ref, verbose_log)?;
let (new_crate_name, _num_sections, new_syms) = {
let new_crate = new_crate_ref.lock_as_ref();
let new_syms = self.add_symbols(new_crate.sections.values(), verbose_log);
(new_crate.crate_name.clone(), new_crate.sections.len(), new_syms)
};
#[cfg(not(loscd_eval))]
info!("loaded new crate {:?}, num sections: {}, added {} new symbols.", new_crate_name, _num_sections, new_syms);
self.crate_tree.lock().insert(new_crate_name, new_crate_ref.clone_shallow());
Ok((new_crate_ref, new_syms))
}
/// The internal function that does the work for loading crates,
/// but does not add the crate nor its symbols to this namespace.
/// See [`load_crate`](#method.load_crate) and [`load_crate_as_application`](#fn.load_crate_as_application).
fn load_crate_internal(&self,
crate_object_file: &FileRef,
temp_backup_namespace: Option<&CrateNamespace>,
kernel_mmi_ref: &MmiRef,
verbose_log: bool
) -> Result<StrongCrateRef, &'static str> {
let cf = crate_object_file.lock();
let (new_crate_ref, elf_file) = self.load_crate_sections(cf.deref(), kernel_mmi_ref, verbose_log)?;
self.perform_relocations(&elf_file, &new_crate_ref, temp_backup_namespace, kernel_mmi_ref, verbose_log)?;
Ok(new_crate_ref)
}
/// This function first loads all of the given crates' sections and adds them to the symbol map,
/// and only after *all* crates are loaded does it move on to linking/relocation calculations.
///
/// This allows multiple object files with circular dependencies on one another
/// to be loaded all at once, as if they were a single entity.
///
/// # Example
/// If crate `A` depends on crate `B`, and crate `B` depends on crate `A`,
/// this function will load both crate `A` and `B` before trying to resolve their dependencies individually.
pub fn load_crates<'f, I>(
&self,
crate_files: I,
temp_backup_namespace: Option<&CrateNamespace>,
kernel_mmi_ref: &MmiRef,
verbose_log: bool,
) -> Result<(), &'static str>
where I: Iterator<Item = &'f FileRef>
{
// First, lock all of the crate object files.
let mut locked_crate_files = Vec::new();
for crate_file_ref in crate_files {
locked_crate_files.push(crate_file_ref.lock());
}
// Second, do all of the section parsing and loading, and add all public symbols to the symbol map.
let mut partially_loaded_crates: Vec<(StrongCrateRef, ElfFile)> = Vec::with_capacity(locked_crate_files.len());
for locked_crate_file in &locked_crate_files {
let (new_crate_ref, elf_file) = self.load_crate_sections(locked_crate_file.deref(), kernel_mmi_ref, verbose_log)?;
let _new_syms = self.add_symbols(new_crate_ref.lock_as_ref().sections.values(), verbose_log);
partially_loaded_crates.push((new_crate_ref, elf_file));
}
// Finally, we do all of the relocations.
for (new_crate_ref, elf_file) in partially_loaded_crates {
self.perform_relocations(&elf_file, &new_crate_ref, temp_backup_namespace, kernel_mmi_ref, verbose_log)?;
let name = new_crate_ref.lock_as_ref().crate_name.clone();
self.crate_tree.lock().insert(name, new_crate_ref);
}
Ok(())
}
/// Duplicates this `CrateNamespace` into a new `CrateNamespace`,
/// but uses a copy-on-write/clone-on-write semantic that creates
/// a special shared reference to each crate that indicates it is shared across multiple namespaces.
///
/// In other words, crates in the new namespace returned by this fucntions
/// are fully shared with crates in *this* namespace,
/// until either namespace attempts to modify a shared crate in the future.
///
/// When modifying crates in the new namespace, e.g., swapping crates,
/// any crates in the new namespace that are still shared with the old namespace
/// must be deeply copied into a new crate that is exclusively owned,
/// and then that new crate will be modified in whichever way desired.
/// For example, if you swapped one crate `A` in the new namespace returned from this function
/// and loaded a new crate `A2` in its place,
/// and two other crates `B` and `C` depended on that newly swapped-out `A`,
/// then `B` and `C` would be transparently deep copied before modifying them to depend on
/// the new crate `A2`, and you would be left with `B2` and `C2` as deep copies of `B` and `C`,
/// that now depend on `A2` instead of `A`.
/// The existing versions of `B` and `C` would still depend on `A`,
/// but they would no longer be part of the new namespace.
///
pub fn clone_on_write(&self) -> CrateNamespace {
CrateNamespace {
name: self.name.clone(),
dir: self.dir.clone(),
tls_initializer: &TLS_INITIALIZER,
recursive_namespace: self.recursive_namespace.clone(),
crate_tree: Mutex::new(self.crate_tree.lock().clone()),
symbol_map: Mutex::new(self.symbol_map.lock().clone()),
fuzzy_symbol_matching: self.fuzzy_symbol_matching,
}
}
/// Finds all of the weak dependents (sections that depend on the given `old_section`)
/// and rewrites their relocation entries to point to the given `new_section`.
/// This effectively replaces the usage of the `old_section` with the `new_section`,
/// but does not make any modifications to symbol maps.
pub fn rewrite_section_dependents(
old_section: &StrongSectionRef,
new_section: &StrongSectionRef,
kernel_mmi_ref: &MmiRef
) -> Result<(), &'static str> {
for weak_dep in &old_section.inner.read().sections_dependent_on_me {
let target_sec = weak_dep.section.upgrade().ok_or("couldn't upgrade WeakDependent.section")?;
let relocation_entry = weak_dep.relocation;
debug!("rewrite_section_dependents(): target_sec: {:?}, old_sec: {:?}, new_sec: {:?}", target_sec, old_section, new_section);
// If the target_sec's mapped pages aren't writable (which is common in the case of swapping),
// then we need to temporarily remap them as writable here so we can fix up the target_sec's new relocation entry.
{
let mut target_sec_mapped_pages = target_sec.mapped_pages.lock();
let target_sec_initial_flags = target_sec_mapped_pages.flags();
if !target_sec_initial_flags.is_writable() {
target_sec_mapped_pages.remap(&mut kernel_mmi_ref.lock().page_table, target_sec_initial_flags.writable(true))?;
}
write_relocation(
relocation_entry,
target_sec_mapped_pages.as_slice_mut(0, target_sec.mapped_pages_offset + target_sec.size)?,
target_sec.mapped_pages_offset,
new_section.virt_addr,
false
)?;
// If we temporarily remapped the target_sec's mapped pages as writable, undo that here
if !target_sec_initial_flags.is_writable() {
target_sec_mapped_pages.remap(&mut kernel_mmi_ref.lock().page_table, target_sec_initial_flags)?;
};
}
// Tell the new source_sec that the existing target_sec depends on it.
// Note that we don't need to do this if we're re-swapping in a cached crate,
// because that crate's sections' dependents are already properly set up from when it was first swapped in.
// if !is_optimized {
new_section.inner.write().sections_dependent_on_me.push(WeakDependent {
section: Arc::downgrade(&target_sec),
relocation: relocation_entry,
});
// }
// Tell the existing target_sec that it no longer depends on the old source section (old_sec),
// and that it now depends on the new source_sec.
let mut found_strong_dependency = false;
for strong_dep in target_sec.inner.write().sections_i_depend_on.iter_mut() {
if Arc::ptr_eq(&strong_dep.section, old_section) && strong_dep.relocation == relocation_entry {
strong_dep.section = Arc::clone(new_section);
found_strong_dependency = true;
break;
}
}
if !found_strong_dependency {
error!("Couldn't find/remove the existing StrongDependency from target_sec {:?} to old_sec {:?}",
target_sec.name, old_section.name);
return Err("Couldn't find/remove the target_sec's StrongDependency on the old crate section");
}
}
Ok(())
}
/// The primary internal routine for parsing and loading all sections in a crate object file.
/// This does not perform any relocations or linking, so the crate **is not yet ready to use after this function**,
/// since its sections are totally incomplete and non-executable.
///
/// However, it does add all of the newly-loaded crate sections to the symbol map (yes, even before relocation/linking),
/// since we can use them to resolve missing symbols for relocations.
///
/// Parses each section in the given `crate_file` object file and copies its contents to each section.
/// Returns a tuple of a reference to the new `LoadedCrate` and the crate's ELF file (to avoid having to re-parse it).
///
/// # Arguments
/// * `crate_file`: the object file for the crate that will be loaded into this `CrateNamespace`.
/// * `kernel_mmi_ref`: the kernel's MMI struct, for memory mapping use.
/// * `verbose_log`: whether to log detailed messages for debugging.
fn load_crate_sections<'f>(
&self,
crate_file: &'f dyn File,
kernel_mmi_ref: &MmiRef,
_verbose_log: bool
) -> Result<(StrongCrateRef, ElfFile<'f>), &'static str> {
let mapped_pages = crate_file.as_mapping()?;
let size_in_bytes = crate_file.len();
let abs_path = PathBuf::from(crate_file.get_absolute_path());
let crate_name = StrRef::from(
crate_name_from_path(&abs_path)
.ok_or("failed to get crate name from path")?
);
// First, check to make sure this crate hasn't already been loaded.
// Application crates are now added to the CrateNamespace just like kernel crates,
// so to load an application crate multiple times and run multiple instances of it,
// you can create a top-level new namespace to hold that application crate.
if self.get_crate(&crate_name).is_some() {
return Err("the crate has already been loaded, cannot load it again in the same namespace");
}
// It's probably better to pass in the actual crate file reference so we can use it here,
// but since we don't currently do that, we just get another reference to the crate object file via its Path.
let crate_object_file = match Path::get_absolute(&abs_path) {
Some(FileOrDir::File(f)) => f,
_ => return Err("BUG: load_crate_sections(): couldn't get crate object file path"),
};
// Parse the crate file as an ELF file
let byte_slice: &[u8] = mapped_pages.as_slice(0, size_in_bytes)?;
let elf_file = ElfFile::new(byte_slice)?; // returns Err(&str) if ELF parse fails
// Check that elf_file is a relocatable type
use xmas_elf::header::Type;
let typ = elf_file.header.pt2.type_().as_type();
if typ != Type::Relocatable {
error!("load_crate_sections(): crate \"{}\" was a {:?} Elf File, must be Relocatable!", &crate_name, typ);
return Err("not a relocatable elf file");
}
// If a `.theseus_merged` section exists (it should come before any .text section),
// then the object file's sections have been merged by a partial relinking step.
// If so, then we can use a much faster version of loading/linking.
const THESEUS_MERGED_SEC_NAME: &str = ".theseus_merged";
let sections_are_merged = {
let mut found = false;
for sec_name in elf_file
.section_iter()
.filter_map(|sec| sec.get_name(&elf_file).ok())
{
if sec_name == THESEUS_MERGED_SEC_NAME {
found = true;
break;
}
else if sec_name.starts_with(TEXT_SECTION_NAME) {
found = false;
break;
}
}
found
};
// Allocate enough space to load the sections
let section_pages = allocate_section_pages(&elf_file, kernel_mmi_ref)?;
let text_pages = section_pages.executable_pages.map(|(tp, range)| (Arc::new(Mutex::new(tp)), range));
let rodata_pages = section_pages.read_only_pages.map( |(rp, range)| (Arc::new(Mutex::new(rp)), range));
let data_pages = section_pages.read_write_pages.map(|(dp, range)| (Arc::new(Mutex::new(dp)), range));
// Create the new `LoadedCrate` now such that its sections can refer back to it.
let new_crate = CowArc::new(LoadedCrate {
crate_name,
debug_symbols_file: Arc::downgrade(&crate_object_file),
object_file: crate_object_file,
sections: HashMap::new(),
text_pages: text_pages.clone(),
rodata_pages: rodata_pages.clone(),
data_pages: data_pages.clone(),
global_sections: BTreeSet::new(),
tls_sections: BTreeSet::new(),
cls_sections: BTreeSet::new(),
data_sections: BTreeSet::new(),
reexported_symbols: BTreeSet::new(),
});
let new_crate_weak_ref = CowArc::downgrade(&new_crate);
let load_sections_fn = if sections_are_merged {
Self::load_crate_with_merged_sections
} else {
Self::load_crate_with_separate_sections
};
let SectionMetadata {
loaded_sections,
global_sections,
tls_sections,
cls_sections,
data_sections,
} = load_sections_fn(
self,
&elf_file,
new_crate_weak_ref,
text_pages,
rodata_pages,
data_pages,
)?;
// Set up the new_crate's sections, since we couldn't do it when `new_crate` was created.
{
let mut new_crate_mut = new_crate.lock_as_mut()
.ok_or("BUG: load_crate_sections(): couldn't get exclusive mutable access to new_crate")?;
new_crate_mut.sections = loaded_sections;
new_crate_mut.global_sections = global_sections;
new_crate_mut.tls_sections = tls_sections;
new_crate_mut.cls_sections = cls_sections;
new_crate_mut.data_sections = data_sections;
}
// TODO: Should be reload().
cls_allocator::reload_current_cpu();
Ok((new_crate, elf_file))
}
/// An internal routine to load and populate the sections of a crate's object file
/// if those sections have already been merged.
///
/// This is the "new, acclerated" way to load sections, and is used by `load_crate_sections()`
/// for object files that **have** been modified by Theseus's special partial relinking script.
///
/// This works by iterating over all symbols in the object file
/// and creating section entries for each one of those symbols only.
/// The actual section data can be loaded quickly because they have been merged into top-level sections,
/// e.g., .text, .rodata, etc, instead of being kept as individual function or data sections.
fn load_crate_with_merged_sections(
&self,
elf_file: &ElfFile,
new_crate: WeakCrateRef,
text_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
rodata_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
data_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
) -> Result<SectionMetadata, &'static str> {
let mut text_pages_locked = text_pages .as_ref().map(|(tp, tp_range)| (tp.clone(), tp.lock(), tp_range.start));
let mut read_only_pages_locked = rodata_pages.as_ref().map(|(rp, rp_range)| (rp.clone(), rp.lock(), rp_range.start));
let mut read_write_pages_locked = data_pages .as_ref().map(|(dp, dp_range)| (dp.clone(), dp.lock(), dp_range.start));
// The section header offset of the first read-only section, which is, in order of existence:
// .rodata, .eh_frame, .gcc_except_table, .tdata, .cls
let mut read_only_offset: Option<usize> = None;
// The section header offset of the first read-write section, which is .data or .bss
let mut read_write_offset: Option<usize> = None;
// We need to track various section `shndx`s to differentiate between
// the different types of "OBJECT" symbols and "TLS" symbols.
//
// For example, we use the `.rodata` shndx in order to determine whether
// an "OBJECT" symbol is read-only (.rodata) or read-write (.data or .bss).
//
// Note: we *could* just get the section header for each symtab entry,
// but that is MUCH slower than tracking them here.
let mut rodata_shndx: Option<Shndx> = None;
let mut data_shndx: Option<Shndx> = None;
let mut bss_shndx_and_offset: Option<(Shndx, usize)> = None;
let mut tdata_shndx_and_section: Option<(Shndx, StrongSectionRef)> = None;
let mut tbss_shndx_and_section: Option<(Shndx, StrongSectionRef)> = None;
let mut cls_shndx_and_section: Option<(Shndx, StrongSectionRef)> = None;
// The set of `LoadedSections` that will be parsed and populated into this `new_crate`.
let mut loaded_sections: HashMap<usize, StrongSectionRef> = HashMap::new();
let mut data_sections: BTreeSet<usize> = BTreeSet::new();
let mut tls_sections: BTreeSet<usize> = BTreeSet::new();
let mut cls_sections: BTreeSet<usize> = BTreeSet::new();
let mut last_shndx = 0;
// Iterate over all "allocated" sections to copy their data from the object file into the above `MappedPages`s.
// This includes .text, .rodata, .data, .bss, .gcc_except_table, .eh_frame, etc.
//
// We currently perform eager copying because MappedPages doesn't yet support backing files or demand paging.
for (shndx, sec) in elf_file.section_iter().enumerate() {
let sec_flags = sec.flags();
// Skip non-allocated sections, because they don't appear in the loaded object file.
if sec_flags & SHF_ALLOC == 0 {
continue;
}
// get the relevant section info, i.e., size, alignment, and data contents
let sec_size = sec.size() as usize;
let sec_offset = sec.offset() as usize;
let is_write = sec_flags & SHF_WRITE == SHF_WRITE;
let is_exec = sec_flags & SHF_EXECINSTR == SHF_EXECINSTR;
let is_tls = sec_flags & SHF_TLS == SHF_TLS;
let is_cls = sec_flags & CLS_SECTION_FLAG == CLS_SECTION_FLAG;
let mut is_rodata = false;
let mut is_eh_frame = false;
let mut is_gcc_except_table = false;
// Declare the items needed to populate/create a new `LoadedSection`.
let typ: SectionType;
let mapped_pages: &mut MappedPages;
let mapped_pages_ref: &Arc<Mutex<MappedPages>>;
let mapped_pages_offset: usize;
let virt_addr: VirtualAddress;
// If executable, copy the .text section data into `text_pages`.
if is_exec {
typ = SectionType::Text;
// There is only one text section, so no offset is needed
mapped_pages_offset = 0;
(mapped_pages_ref, mapped_pages, virt_addr) = text_pages_locked.as_mut()
.map(|(tp_ref, tp, tp_start_vaddr)| (tp_ref, tp, *tp_start_vaddr + mapped_pages_offset))
.ok_or("BUG: ELF file contained a .text section, but no text_pages were allocated")?;
}
// Otherwise, if writable (excluding TLS and CLS), copy the .data/.bss section into `data_pages`.
else if is_write && !is_tls && !is_cls {
match sec.get_type() {
Ok(ShType::ProgBits) => {
typ = SectionType::Data;
data_shndx.get_or_insert(shndx);
}
Ok(ShType::NoBits) => {
typ = SectionType::Bss;
bss_shndx_and_offset.get_or_insert((shndx, sec_offset));
}
_other => {
error!("BUG: writable section was neither PROGBITS (.data) nor NOBITS (.bss): type: {:?}, {:X?}", _other, sec);
return Err("BUG: writable section was neither PROGBITS (.data) nor NOBITS (.bss)");
}
};
let starting_offset_of_data = read_write_offset.get_or_insert(sec_offset);
mapped_pages_offset = sec_offset - *starting_offset_of_data;
(mapped_pages_ref, mapped_pages, virt_addr) = read_write_pages_locked.as_mut()
.map(|(dp_ref, dp, dp_start_vaddr)| (dp_ref, dp, *dp_start_vaddr + mapped_pages_offset))
.ok_or("BUG: ELF file contained a .data/.bss section, but no data_pages were allocated")?;
data_sections.insert(shndx);
}
// Otherwise, if TLS section, copy its data into `rodata_pages`.
// Although TLS sections have "WAT" flags (write, alloc, TLS),
// we load TLS sections into the same read-only pages as other read-only sections
// because they contain thread-local storage initializer data that is only read from.
else if is_tls {
match sec.get_type() {
Ok(ShType::ProgBits) => {
typ = SectionType::TlsData;
let read_only_start = read_only_offset.get_or_insert(sec_offset);
mapped_pages_offset = sec_offset - *read_only_start;
}
Ok(ShType::NoBits) => {
typ = SectionType::TlsBss;
// Here: a TLS .tbss section has no actual content, so we use a max-value offset
// as a canary value to ensure it cannot be used to index into a MappedPages.
mapped_pages_offset = usize::MAX;
}
_other => {
error!("BUG: TLS section was neither PROGBITS (.tdata) nor NOBITS (.tbss): type: {:?}, {:X?}", _other, sec);
return Err("BUG: TLS section was neither PROGBITS (.tdata) nor NOBITS (.tbss)");
}
};
(mapped_pages_ref, mapped_pages) = read_only_pages_locked.as_mut()
.map(|(rp_ref, rp, _)| (rp_ref, rp))
.ok_or("BUG: ELF file contained a .tdata/.tbss section, but no rodata_pages were allocated")?;
// Use a placeholder vaddr; it will be replaced in `add_new_dynamic_section()` below.
virt_addr = VirtualAddress::zero();
tls_sections.insert(shndx);
} else if is_cls {
match sec.get_type() {
Ok(ShType::ProgBits) => {
typ = SectionType::Cls;
let read_only_start = read_only_offset.get_or_insert(sec_offset);
mapped_pages_offset = sec_offset - *read_only_start;
(mapped_pages_ref, mapped_pages) = read_only_pages_locked.as_mut()
.map(|(rp_ref, rp, _)| (rp_ref, rp))
.ok_or("BUG: ELF file contained a .cls section, but no rodata_pages were allocated")?;
// Use a placeholder vaddr; it will be replaced in `add_new_dynamic_section()` below.
virt_addr = VirtualAddress::zero();
cls_sections.insert(shndx);
}
ty => {
error!("CLS section had incorrect type: {ty:?}");
return Err("CLS section had incorrect type");
},
}
}
// Otherwise, if .rodata, .eh_frame, or .gcc_except_table, copy its data into `rodata_pages`.
else if {
match sec.get_name(elf_file) {
Ok(RODATA_SECTION_NAME) => is_rodata = true,
Ok(EH_FRAME_SECTION_NAME) => is_eh_frame = true,
Ok(GCC_EXCEPT_TABLE_SECTION_NAME) => is_gcc_except_table = true,
Ok(_other) => { /* fall through to next `else if` block */ }
Err(_e) => {
error!("BUG: Error: {:?}, couldn't get section name for {:?}", _e, sec);
return Err("BUG: couldn't get section name");
}
}
is_rodata || is_eh_frame || is_gcc_except_table
} {
if is_rodata {
typ = SectionType::Rodata;
rodata_shndx = Some(shndx);
} else if is_eh_frame {
typ = SectionType::EhFrame;
} else if is_gcc_except_table {
typ = SectionType::GccExceptTable;
} else {
unreachable!()
}
let read_only_start = read_only_offset.get_or_insert(sec_offset);
mapped_pages_offset = sec_offset - *read_only_start;
(mapped_pages_ref, mapped_pages, virt_addr) = read_only_pages_locked.as_mut()
.map(|(rp_ref, rp, rp_start_vaddr)| (rp_ref, rp, *rp_start_vaddr + mapped_pages_offset))
.ok_or("BUG: ELF file contained a read-only section, but no rodata_pages were allocated")?;
}
// Finally, any other section type is considered unhandled, so return an error!
else {
// .debug_* sections are handled separately and loaded on demand later.
let sec_name = sec.get_name(elf_file);
if sec_name.map_or(false, |n| n.starts_with(".debug")) {
continue;
}
error!("unhandled sec, name: {:?}, {:X?}", sec_name, sec);
return Err("load_crate_with_merged_sections(): section with unhandled type, name, or flags!");
}
// Actually copy the section data from the ELF file to the given destination MappedPages.
// Skip TLS BSS (.tbss) sections, which have no data and occupy no space in memory.
if typ != SectionType::TlsBss {
let dest_slice: &mut [u8] = mapped_pages.as_slice_mut(mapped_pages_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
Ok(SectionData::Empty) => dest_slice.fill(0),
_other => {
error!("Couldn't get section data for merged section: {:?}", _other);
return Err("couldn't get section data for merged section");
}
}
}
// Create a new `LoadedSection` to represent this section.
let new_section = LoadedSection::new(
typ,
section_name_str_ref(&typ),
Arc::clone(mapped_pages_ref),
mapped_pages_offset,
virt_addr,
sec_size,
false, // no merged sections are global
new_crate.clone(),
);
let new_section_ref = if is_tls {
// Add the new TLS section to this namespace's initial TLS area,
// which will reserve/obtain a new offset into that TLS area which holds this section's data.
// This will also update the section's virtual address field to hold that offset value,
// which is used for relocation entries that ask for a section's offset from the TLS base.
let (_tls_offset, new_tls_section) = self.tls_initializer.lock()
.add_new_dynamic_section(new_section, sec.align() as usize)
.map_err(|_| "Failed to add new dynamic TLS section")?;
// trace!("Updated new TLS section to have offset {:#X}: {:?}", _tls_offset, new_tls_section);
if new_tls_section.typ == SectionType::TlsData {
tdata_shndx_and_section = Some((shndx, Arc::clone(&new_tls_section)));
} else {
tbss_shndx_and_section = Some((shndx, Arc::clone(&new_tls_section)));
}
new_tls_section
} else if is_cls {
let (_, new_cls_section) = cls_allocator::add_dynamic_section(new_section, sec.align() as usize)
.map_err(|_| "Failed to add new dynamic CLS section")?;
cls_shndx_and_section = Some((shndx, Arc::clone(&new_cls_section)));
new_cls_section
} else {
Arc::new(new_section)
};
loaded_sections.insert(shndx, new_section_ref);
last_shndx = shndx + 1;
}
// Now that we've copied all the section data from the object file to the various mapped pages,
// we can populate the crate's sets of global sections by iterating over the symbol table.
// The above loop just handled the merged sections, none of which should be made global.
let mut global_sections: BTreeSet<usize> = BTreeSet::new();
let symtab = find_symbol_table(elf_file)?;
use xmas_elf::symbol_table::Entry;
for (_sym_num, symbol_entry) in symtab.iter().enumerate() {
let sec_type = symbol_entry.get_type().map_err(|_e| {
error!("BUG: Error: {:?}, couldn't get symtab entry type: {}", _e, symbol_entry as &dyn Entry);
"BUG: couldn't get symtab entry type"
})?;
// Skip irrelevant symbols, e.g., NOTYPE, SECTION, etc.
if let Type::NoType | Type::Section = sec_type {
continue;
}
// trace!("Symtab entry {:?}\n\tnum: {}, value: {:#X}, size: {}, type: {:?}, bind: {:?}, vis: {:?}, shndx: {}",
// symbol_entry.get_name(&elf_file).unwrap(), _sym_num, symbol_entry.value(), symbol_entry.size(), symbol_entry.get_type().unwrap(), symbol_entry.get_binding().unwrap(), symbol_entry.get_other(), symbol_entry.shndx()
// );
// Get the relevant section info from the symtab entry
let sec_size = symbol_entry.size() as usize;
let sec_value = symbol_entry.value() as usize;
let sec_name = symbol_entry.get_name(elf_file).map_err(|_e| {
error!("BUG: Error: {:?}, couldn't get symtab entry name: {}", _e, symbol_entry as &dyn Entry);
"BUG: couldn't get symtab entry name"
})?;
let sec_binding = symbol_entry.get_binding().map_err(|_e| {
error!("BUG: Error: {:?}, couldn't get symtab entry binding: {}", _e, symbol_entry as &dyn Entry);
"BUG: couldn't get symtab entry binding"
})?;
let is_global = sec_binding == Binding::Global;
let is_tls = sec_type == Type::Tls;
let is_cls = sec_type == Type::OsSpecific(CLS_SYMBOL_TYPE);
let demangled = demangle(sec_name).to_string().as_str().into();
// Declare the items we need to create a new `LoadedSection`.
let typ: SectionType;
let mapped_pages: &Arc<Mutex<MappedPages>>;
let mapped_pages_offset: usize;
let virt_addr: VirtualAddress;
// Handle a "FUNC" symbol, which exists in .text
if sec_type == Type::Func {
let (tp_ref, tp_start_vaddr) = text_pages_locked.as_ref()
.map(|(mp_arc, _, mp_vaddr)| (mp_arc, *mp_vaddr))
.ok_or("BUG: found FUNC symbol but no text_pages were allocated")?;
typ = SectionType::Text;
mapped_pages = tp_ref;
// no additional offset below, because .text is always the first (and only) exec section.
mapped_pages_offset = sec_value;
virt_addr = tp_start_vaddr + mapped_pages_offset;
}
// Handle an "OBJECT" symbol, which exists in .rodata, .data, or .bss
else if sec_type == Type::Object {
let sym_shndx = symbol_entry.shndx() as Shndx;
// Handle .rodata symbol
if Some(sym_shndx) == rodata_shndx {
let (rp_ref, rp_start_vaddr) = read_only_pages_locked.as_ref()
.map(|(mp_arc, _, mp_vaddr)| (mp_arc, *mp_vaddr))
.ok_or("BUG: found OBJECT symbol in .rodata but no rodata_pages were allocated")?;
typ = SectionType::Rodata;
mapped_pages = rp_ref;
// no additional offset below, because .rodata is always the first read-only section.
mapped_pages_offset = sec_value;
virt_addr = rp_start_vaddr + mapped_pages_offset;
}
// Handle .data/.bss symbol
else {
data_sections.insert(last_shndx);
let (dp_ref, dp_start_vaddr) = read_write_pages_locked.as_ref()
.map(|(mp_arc, _, mp_vaddr)| (mp_arc, *mp_vaddr))
.ok_or("BUG: found OBJECT symbol in .data/.bss but no data_pages were allocated")?;
let read_write_start = read_write_offset.ok_or("BUG: found OBJECT symbol in .data/.bss but `data_offset` was unknown")?;
if Some(sym_shndx) == data_shndx {
typ = SectionType::Data;
// no additional offset below, because .data is always the first read-write section.
mapped_pages_offset = sec_value;
} else if let Some((bss_shndx, bss_offset)) = bss_shndx_and_offset && sym_shndx == bss_shndx {
typ = SectionType::Bss;
mapped_pages_offset = sec_value + (bss_offset - read_write_start);
} else {
error!("BUG: found OBJECT symbol with an shndx that wasn't in .rodata, .data, or .bss: {}", symbol_entry as &dyn Entry);
return Err("BUG: found OBJECT symbol with an shndx that wasn't in .rodata, .data, or .bss");
};
mapped_pages = dp_ref;
virt_addr = dp_start_vaddr + mapped_pages_offset;
}
}
// Handle a "TLS" symbol, which exists in .tdata or .tbss
else if is_tls {
let sym_shndx = symbol_entry.shndx() as Shndx;
// A TLS symbol with an shndx of 0 is a reference to a foreign dependency,
// so we skip it just like we do for `NoType` symbols at the top of this loop.
if sym_shndx == 0 {
continue;
}
// TLS sections have been copied into the read-only pages.
// The merged TLS sections have already been dynamically assigned a virtual address above,
// so we can calculate a TLS symbol's vaddr and mapped_pages_offset by adding
// the symbol's value (`sec_value`) to that of the corresponding merged section.
let rp_ref = read_only_pages_locked.as_ref()
.map(|(mp_arc, ..)| mp_arc)
.ok_or("BUG: found TLS symbol but no rodata_pages were allocated")?;
if let Some((tdata_shndx, ref tdata_sec)) = tdata_shndx_and_section && sym_shndx == tdata_shndx {
typ = SectionType::TlsData;
mapped_pages_offset = tdata_sec.mapped_pages_offset + sec_value;
virt_addr = tdata_sec.virt_addr + sec_value;
} else if let Some((tbss_shndx, ref tbss_sec)) = tbss_shndx_and_section && sym_shndx == tbss_shndx {
typ = SectionType::TlsBss;
// Here: a TLS .tbss section has no actual content, so we use a max-value offset
// as a canary value to ensure it cannot be used to index into a MappedPages.
mapped_pages_offset = usize::MAX;
virt_addr = tbss_sec.virt_addr + sec_value;
} else {
error!("BUG: found TLS symbol with an shndx that wasn't in .tdata or .tbss: {}", symbol_entry as &dyn Entry);
return Err("BUG: found TLS symbol with an shndx that wasn't in .tdata or .tbss");
};
mapped_pages = rp_ref;
}
else if is_cls {
let sym_shndx = symbol_entry.shndx() as Shndx;
let rp_ref = read_only_pages_locked.as_ref()
.map(|(mp_arc, ..)| mp_arc)
.ok_or("BUG: found CLS symbol but no rodata_pages were allocated")?;
if let Some((cls_shndx, ref cls_sec)) = cls_shndx_and_section && sym_shndx == cls_shndx {
typ = SectionType::Cls;
mapped_pages_offset = cls_sec.mapped_pages_offset + sec_value;
virt_addr = cls_sec.virt_addr + sec_value;
} else {
error!("BUG: found CLS symbol with an shndx that wasn't in .cls: {}", symbol_entry as &dyn Entry);
return Err("BUG: found CLS symbol with an shndx that wasn't in .cls");
};
mapped_pages = rp_ref;
}
else {
error!("Found unexpected symbol type: {}", symbol_entry as &dyn Entry);
return Err("Found unexpected symbol type");
}
// Create the new `LoadedSection`
loaded_sections.insert(
last_shndx,
Arc::new(LoadedSection::new(
typ,
demangled,
Arc::clone(mapped_pages),
mapped_pages_offset,
virt_addr,
sec_size,
is_global,
new_crate.clone(),
))
);
if is_global {
global_sections.insert(last_shndx);
}
last_shndx += 1;
} // end of iterating over all symbol table entries
// // Quick test to ensure that all .data and .bss sections are fully covered
// // by overlapping OBJECT symbols.
// if !data_sections.is_empty() {
// warn!("Data sections for {:?}: {:?}", new_crate.upgrade().unwrap().lock_as_ref().crate_name, data_sections);
// if let Some(data_sec) = data_shndx.and_then(|i| loaded_sections.get(&i)) {
// warn!("\t .data sec size: {:#X}", data_sec.size());
// let mut data_symbols_start_vaddr = usize::MAX;
// let mut data_symbols_end_vaddr = 0;
// for sec in loaded_sections.values() {
// if sec.typ == SectionType::Data && sec.name.as_str() != SectionType::Data.name() {
// warn!("\t\t data symbol: {:?}", sec);
// data_symbols_start_vaddr = core::cmp::min(data_symbols_start_vaddr, sec.virt_addr.value());
// data_symbols_end_vaddr = core::cmp::max(data_symbols_end_vaddr, sec.virt_addr.value() + sec.size);
// }
// }
// let total_size_of_data_symbols = data_symbols_end_vaddr - data_symbols_start_vaddr;
// if total_size_of_data_symbols != data_sec.size() {
// error!(".data section size {:#X} does not match total size of data symbols {:#X}", data_sec.size(), total_size_of_data_symbols);
// }
// }
// if let Some(bss_sec) = bss_shndx_and_offset.and_then(|(i, _off)| loaded_sections.get(&i)) {
// warn!("\t .bss sec size: {:#X}", bss_sec.size());
// let mut bss_symbols_start_vaddr = usize::MAX;
// let mut bss_symbols_end_vaddr = 0;
// for sec in loaded_sections.values() {
// if sec.typ == SectionType::Bss && sec.name.as_str() != SectionType::Bss.name() {
// warn!("\t\t bss symbol: {:?}", sec);
// bss_symbols_start_vaddr = core::cmp::min(bss_symbols_start_vaddr, sec.virt_addr.value());
// bss_symbols_end_vaddr = core::cmp::max(bss_symbols_end_vaddr, sec.virt_addr.value() + sec.size);
// }
// }
// let total_size_of_bss_symbols = bss_symbols_end_vaddr - bss_symbols_start_vaddr;
// if total_size_of_bss_symbols != bss_sec.size() {
// error!(".bss section size {:#X} does not match total size of bss symbols {:#X}", bss_sec.size(), total_size_of_bss_symbols);
// }
// }
// }
Ok(SectionMetadata {
loaded_sections,
global_sections,
tls_sections,
cls_sections,
data_sections,
})
}
/// An internal routine to load and populate the sections of a crate's object file
/// if those sections have not been merged.
///
/// This is the "legacy" way to load sections, and is used by `load_crate_sections()`
/// for object files that have **not** been modified by Theseus's special partial relinking script.
///
/// This works by iterating over all section headers in the object file
/// and extracting the symbol names from each section name, which is quite slow.
fn load_crate_with_separate_sections(
&self,
elf_file: &ElfFile,
new_crate: WeakCrateRef,
text_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
rodata_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
data_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
) -> Result<SectionMetadata, &'static str> {
// Check the symbol table to get the set of sections that are global (publicly visible).
let global_sections: BTreeSet<Shndx> = {
// For us to properly load the ELF file, it must NOT have been fully stripped,
// meaning that it must still have its symbol table section. Otherwise, relocations will not work.
let symtab = find_symbol_table(elf_file)?;
let mut globals: BTreeSet<Shndx> = BTreeSet::new();
use xmas_elf::symbol_table::Entry;
for entry in symtab.iter() {
// Include all symbols with "GLOBAL" binding, regardless of visibility.
if entry.get_binding() == Ok(xmas_elf::symbol_table::Binding::Global) {
match entry.get_type() {
Ok(xmas_elf::symbol_table::Type::Func
| xmas_elf::symbol_table::Type::Object
| xmas_elf::symbol_table::Type::Tls) => {
globals.insert(entry.shndx() as Shndx);
}
_ => continue,
}
}
}
globals
};
// Since .text sections come at the beginning of the object file,
// we can simply directly copy all .text sections at once,
// ranging from the beginning of the file to the end of the last .text section.
// We actually must do it this way, though it has the following tradeoffs:
// (+) It's more correct than calculating the minimum required size of each individual .text section,
// because other sections (e.g., eh_frame) rely on the layout of loaded .text sections
// to be identical to their layout (offsets) specified in the object file.
// Otherwise, parsing debug/frame sections won't work properly.
// (+) It's way faster to load the sections, since we can just bulk copy all .text sections at once
// instead of copying them individually on a per-section basis (or just remap their pages directly).
// (-) It ends up wasting a some bytes here and there, but almost always under 100 bytes.
// If object file sections have been merged, no memory is wasted.
if let Some((ref tp, ref tp_range)) = text_pages {
let text_size = tp_range.end.value() - tp_range.start.value();
let mut tp_locked = tp.lock();
let text_destination: &mut [u8] = tp_locked.as_slice_mut(0, text_size)?;
let text_source = elf_file.input.get(..text_size).ok_or("BUG: end of last .text section was miscalculated to be beyond ELF file bounds")?;
text_destination.copy_from_slice(text_source);
}
// Because .rodata, .data, and .bss may be intermingled,
// we copy them into their respective pages individually on a per-section basis,
// keeping track of the offset into each of their MappedPages as we go.
let (mut rodata_offset, mut data_offset) = (0 , 0);
const TEXT_PREFIX: &str = ".text.";
const UNLIKELY_PREFIX: &str = "unlikely."; // the full section prefix is ".text.unlikely."
const RODATA_PREFIX: &str = ".rodata.";
const DATA_PREFIX: &str = ".data.";
const BSS_PREFIX: &str = ".bss.";
const CLS_PREFIX: &str = ".cls.";
const TLS_DATA_PREFIX: &str = ".tdata.";
const TLS_BSS_PREFIX: &str = ".tbss.";
// const RELRO_PREFIX: &str = "rel.ro.";
const GCC_EXCEPT_TABLE_PREFIX: &str = ".gcc_except_table.";
const EH_FRAME_NAME: &str = ".eh_frame";
/// A convenient macro to obtain the rest of the symbol name after its prefix,
/// i.e., the characters after '.text', '.rodata', '.data', etc.
///
/// * If the name isn't long enough, the macro prints and returns an error str.
/// * If the name isn't long enough but is an empty section (e.g., just ".text", ".rodata", etc)
/// this macro `continue`s to the next iteration of the loop.
/// * The `$prefix` argument must be `const` so it can be `concat!()`-ed into a const &str.
///
/// Note: I'd prefer this to be a const function that accepts the prefix as a const &'static str,
/// but Rust does not support concat!()-ing const generic parameters yet.
macro_rules! try_get_symbol_name_after_prefix {
($sec_name:ident, $prefix:ident) => (
if let Some(name) = $sec_name.get($prefix.len() ..) {
name
} else {
// Ignore special "empty" placeholder sections
match $sec_name {
".text" => continue,
".rodata" => continue,
".data" => continue,
".bss" => continue,
_ => {
const ERROR_STR: &'static str = const_format::concatcp!(
"Failed to get the ", $prefix,
" section's name after '", $prefix, "'"
);
error!("{}: {:?}", ERROR_STR, $sec_name);
return Err(ERROR_STR);
}
}
}
);
}
// this maps section header index (shndx) to LoadedSection
let mut loaded_sections: HashMap<Shndx, StrongSectionRef> = HashMap::new();
// the set of Shndxes for .data and .bss sections
let mut data_sections: BTreeSet<Shndx> = BTreeSet::new();
// the set of Shndxes for TLS sections (.tdata, .tbss)
let mut tls_sections: BTreeSet<Shndx> = BTreeSet::new();
// the set of Shndxes for CLS sections (.cls)
let mut cls_sections: BTreeSet<Shndx> = BTreeSet::new();
let mut read_only_pages_locked = rodata_pages.as_ref().map(|(rp, _)| (rp.clone(), rp.lock()));
let mut read_write_pages_locked = data_pages .as_ref().map(|(dp, _)| (dp.clone(), dp.lock()));
// In this loop, we handle only "allocated" sections that occupy memory in the actual loaded object file.
// This includes .text, .rodata, .data, .bss, .gcc_except_table, .eh_frame, and potentially others.
for (shndx, sec) in elf_file.section_iter().enumerate() {
let sec_flags = sec.flags();
// Skip non-allocated sections, because they don't appear in the loaded object file.
if sec_flags & SHF_ALLOC == 0 {
continue;
}
// Even if we're using the next section's data (for a zero-sized section, as handled below),
// we still want to use this current section's actual name and flags!
let sec_name = match sec.get_name(elf_file) {
Ok(name) => name,
Err(_e) => {
error!("Couldn't get section name for section [{}]: {:?}\n error: {}", shndx, sec, _e);
return Err("couldn't get section name");
}
};
// This handles the rare case of a zero-sized section.
// A section of size zero shouldn't necessarily be removed, as they are sometimes referenced in relocations;
// typically the zero-sized section itself is a reference to the next section in the list of section headers.
// Thus, we need to use the *current* section's name with the *next* section's information,
// i.e., its size, alignment, and actual data.
let sec = if sec.size() == 0 {
match elf_file.section_header((shndx + 1) as u16) { // get the next section
Ok(next_sec) => {
// The next section must have the same offset as the current zero-sized one
if next_sec.offset() == sec.offset() {
// if it does, we can use it in place of the current section
next_sec
} else {
// if it does not, we should NOT use it in place of the current section
sec
}
}
_ => {
error!("Couldn't get next section for zero-sized section {}", shndx);
return Err("couldn't get next section for a zero-sized section");
}
}
} else {
// this is the normal case, a non-zero sized section, so just use the current section
sec
};
// get the relevant section info, i.e., size, alignment, and data contents
let sec_size = sec.size() as usize;
let sec_align = sec.align() as usize;
let is_write = sec_flags & SHF_WRITE == SHF_WRITE;
let is_exec = sec_flags & SHF_EXECINSTR == SHF_EXECINSTR;
let is_tls = sec_flags & SHF_TLS == SHF_TLS;
let is_cls = sec_flags & CLS_SECTION_FLAG == CLS_SECTION_FLAG;
// First, check for executable sections, which can only be .text sections.
if is_exec && !is_write {
let is_global = global_sections.contains(&shndx);
let name = try_get_symbol_name_after_prefix!(sec_name, TEXT_PREFIX);
// Handle cold sections, which have a section prefix of ".text.unlikely."
// Currently, we ignore the cold/hot designation in terms of placing a section in memory.
// Note: we only *truly* have to do this for global sections, because other crates
// might depend on their correct section name after the ".text.unlikely." prefix.
let name = if is_global && name.starts_with(UNLIKELY_PREFIX) {
name.get(UNLIKELY_PREFIX.len() ..).ok_or_else(|| {
error!("Failed to get the .text.unlikely. section's name: {:?}", sec_name);
"Failed to get the .text.unlikely. section's name after the prefix"
})?
} else {
name
};
let demangled = demangle(name).to_string().as_str().into();
// We already copied the content of all .text sections above,
// so here we just record the metadata into a new `LoadedSection` object.
if let Some((ref tp_ref, ref tp_range)) = text_pages {
let text_offset = sec.offset() as usize;
let dest_vaddr = tp_range.start + text_offset;
loaded_sections.insert(
shndx,
Arc::new(LoadedSection::new(
SectionType::Text,
demangled,
Arc::clone(tp_ref),
text_offset,
dest_vaddr,
sec_size,
is_global,
new_crate.clone(),
))
);
}
else {
return Err("BUG: ELF file contained a .text* section, but no text_pages were allocated");
}
}
// Second, if not executable, handle TLS sections.
// Although TLS sections have "WAT" flags (write, alloc, TLS),
// we load TLS sections into the same read-only pages as other read-only sections (e.g., .rodata)
// because they contain thread-local storage initializer data that is only read from.
else if is_tls {
// check if this TLS section is .bss or .data
let is_bss = sec.get_type() == Ok(ShType::NoBits);
let name = if is_bss {
try_get_symbol_name_after_prefix!(sec_name, TLS_BSS_PREFIX)
} else {
try_get_symbol_name_after_prefix!(sec_name, TLS_DATA_PREFIX)
};
let demangled = demangle(name).to_string().as_str().into();
if let Some((ref rp_ref, ref mut rp)) = read_only_pages_locked {
let (mapped_pages_offset, sec_typ) = if is_bss {
// Here: a TLS .tbss section has no actual content, so we use a max-value offset
// as a canary value to ensure it cannot be used to index into a MappedPages.
(usize::MAX, SectionType::TlsBss)
} else {
// Here: copy the TLS .tdata section's contents to the proper address in the read-only pages.
let dest_slice: &mut [u8] = rp.as_slice_mut(rodata_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
_other => {
error!("load_crate_sections(): Couldn't get section data for TLS .tdata section [{}] {}: {:?}", shndx, sec_name, _other);
return Err("couldn't get section data in TLS .tdata section");
}
};
// As with all other normal sections, use the current offset for these read-only pages.
(rodata_offset, SectionType::TlsData)
};
let new_tls_section = LoadedSection::new(
sec_typ,
demangled,
Arc::clone(rp_ref),
mapped_pages_offset,
VirtualAddress::zero(), // will be replaced in `add_new_dynamic_section()` below
sec_size,
global_sections.contains(&shndx),
new_crate.clone(),
);
// trace!("Loaded new TLS section: {:?}", new_tls_section);
// Add the new TLS section to this namespace's initial TLS area,
// which will reserve/obtain a new offset into that TLS area which holds this section's data.
// This will also update the section's virtual address field to hold that offset value,
// which is used for relocation entries that ask for a section's offset from the TLS base.
let (_tls_offset, new_tls_section) = self.tls_initializer.lock()
.add_new_dynamic_section(new_tls_section, sec_align)
.map_err(|_| "Failed to add new TLS section")?;
// trace!("\t --> updated new TLS section: {:?}", new_tls_section);
loaded_sections.insert(shndx, new_tls_section);
tls_sections.insert(shndx);
rodata_offset += sec_size.next_multiple_of(sec_align);
}
else {
return Err("no rodata_pages were allocated when handling TLS section");
}
}
else if is_cls {
if sec.get_type() != Ok(ShType::ProgBits) {
return Err("CLS section had wrong type");
}
let name = try_get_symbol_name_after_prefix!(sec_name, CLS_PREFIX);
let demangled = demangle(name).to_string().as_str().into();
if let Some((ref rp_ref, ref mut rp)) = read_only_pages_locked {
let (mapped_pages_offset, sec_typ) = {
// Here: copy the TLS .tdata section's contents to the proper address in the read-only pages.
let dest_slice: &mut [u8] = rp.as_slice_mut(rodata_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
_other => {
error!("load_crate_sections(): Couldn't get section data for CLS .cls section [{}] {}: {:?}", shndx, sec_name, _other);
return Err("couldn't get section data in CLS .cls section");
}
};
// As with all other normal sections, use the current offset for these read-only pages.
(rodata_offset, SectionType::Cls)
};
let new_cls_section = LoadedSection::new(
sec_typ,
demangled,
Arc::clone(rp_ref),
mapped_pages_offset,
VirtualAddress::zero(), // will be replaced in `add_dynamic_section()` below
sec_size,
global_sections.contains(&shndx),
new_crate.clone(),
);
let (_, new_cls_section) = cls_allocator::add_dynamic_section(new_cls_section, sec_align)
.map_err(|_| "Failed to add new CLS section")?;
loaded_sections.insert(shndx, new_cls_section);
cls_sections.insert(shndx);
rodata_offset += sec_size.next_multiple_of(sec_align);
}
else {
return Err("no rodata_pages were allocated when handling TLS section");
}
}
// Third, if not executable nor TLS, handle writable .data/.bss sections.
else if is_write {
// check if this section is .bss or .data
let is_bss = sec.get_type() == Ok(ShType::NoBits);
let name = if is_bss {
try_get_symbol_name_after_prefix!(sec_name, BSS_PREFIX)
} else {
try_get_symbol_name_after_prefix!(sec_name, DATA_PREFIX)
// Currently, .rel.ro sections no longer exist in object files compiled for Theseus.
// .and_then(|name| {
// if name.starts_with(RELRO_PREFIX) {
// name.get(RELRO_PREFIX.len() ..)
// } else {
// Some(name)
// }
// })
};
let demangled = demangle(name).to_string().as_str().into();
if let Some((ref dp_ref, ref mut dp)) = read_write_pages_locked {
// here: we're ready to copy the data/bss section to the proper address
let dest_vaddr = dp.address_at_offset(data_offset)
.ok_or("BUG: data_offset wasn't within data_pages")?;
let dest_slice: &mut [u8] = dp.as_slice_mut(data_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
Ok(SectionData::Empty) => dest_slice.fill(0),
_other => {
error!("load_crate_sections(): Couldn't get section data for .data section [{}] {}: {:?}", shndx, sec_name, _other);
return Err("couldn't get section data in .data section");
}
}
loaded_sections.insert(
shndx,
Arc::new(LoadedSection::new(
if is_bss { SectionType::Bss } else { SectionType::Data },
demangled,
Arc::clone(dp_ref),
data_offset,
dest_vaddr,
sec_size,
global_sections.contains(&shndx),
new_crate.clone(),
))
);
data_sections.insert(shndx);
data_offset += sec_size.next_multiple_of(sec_align);
}
else {
return Err("no data_pages were allocated for .data/.bss section");
}
}
// Fourth, if neither executable nor TLS nor writable, handle .rodata sections.
else if sec_name.starts_with(RODATA_PREFIX) {
let name = try_get_symbol_name_after_prefix!(sec_name, RODATA_PREFIX);
let demangled = demangle(name).to_string().as_str().into();
if let Some((ref rp_ref, ref mut rp)) = read_only_pages_locked {
// here: we're ready to copy the rodata section to the proper address
let dest_vaddr = rp.address_at_offset(rodata_offset)
.ok_or("BUG: rodata_offset wasn't within rodata_mapped_pages")?;
let dest_slice: &mut [u8] = rp.as_slice_mut(rodata_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
Ok(SectionData::Empty) => dest_slice.fill(0),
_other => {
error!("load_crate_sections(): Couldn't get section data for .rodata section [{}] {}: {:?}", shndx, sec_name, _other);
return Err("couldn't get section data in .rodata section");
}
}
loaded_sections.insert(
shndx,
Arc::new(LoadedSection::new(
SectionType::Rodata,
demangled,
Arc::clone(rp_ref),
rodata_offset,
dest_vaddr,
sec_size,
global_sections.contains(&shndx),
new_crate.clone(),
))
);
rodata_offset += sec_size.next_multiple_of(sec_align);
}
else {
return Err("no rodata_pages were allocated when handling .rodata section");
}
}
// Fifth, if neither executable nor TLS nor writable nor .rodata, handle the `.gcc_except_table` sections
else if sec_name.starts_with(GCC_EXCEPT_TABLE_PREFIX) {
// We don't need to waste space keeping the name of the `.gcc_exept_table` section,
// because that name is irrelevant and will never be used.
//
// let name = try_get_symbol_name_after_prefix!(sec_name, GCC_EXCEPT_TABLE_PREFIX);
// let demangled = demangle(name).to_string().into();
// gcc_except_table sections are read-only, so we put them in the .rodata pages
if let Some((ref rp_ref, ref mut rp)) = read_only_pages_locked {
// here: we're ready to copy the rodata section to the proper address
let dest_vaddr = rp.address_at_offset(rodata_offset)
.ok_or("BUG: rodata_offset wasn't within rodata_mapped_pages")?;
let dest_slice: &mut [u8] = rp.as_slice_mut(rodata_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
Ok(SectionData::Empty) => dest_slice.fill(0),
_other => {
error!("load_crate_sections(): Couldn't get section data for .gcc_except_table section [{}] {}: {:?}", shndx, sec_name, _other);
return Err("couldn't get section data in .gcc_except_table section");
}
}
let typ = SectionType::GccExceptTable;
loaded_sections.insert(
shndx,
Arc::new(LoadedSection::new(
typ,
section_name_str_ref(&typ),
Arc::clone(rp_ref),
rodata_offset,
dest_vaddr,
sec_size,
false, // .gcc_except_table sections are never globally visible,
new_crate.clone(),
))
);
rodata_offset += sec_size.next_multiple_of(sec_align);
}
else {
return Err("no rodata_pages were allocated when handling .gcc_except_table");
}
}
// Fifth, if neither executable nor TLS nor writable nor .rodata nor .gcc_except_table, handle the `.eh_frame` section
else if sec_name == EH_FRAME_NAME {
// The eh_frame section is read-only, so we put it in the .rodata pages
if let Some((ref rp_ref, ref mut rp)) = read_only_pages_locked {
// here: we're ready to copy the rodata section to the proper address
let dest_vaddr = rp.address_at_offset(rodata_offset)
.ok_or("BUG: rodata_offset wasn't within rodata_mapped_pages")?;
let dest_slice: &mut [u8] = rp.as_slice_mut(rodata_offset, sec_size)?;
match sec.get_data(elf_file) {
Ok(SectionData::Undefined(sec_data)) => dest_slice.copy_from_slice(sec_data),
Ok(SectionData::Empty) => dest_slice.fill(0),
_other => {
error!("load_crate_sections(): Couldn't get section data for .eh_frame section [{}] {}: {:?}", shndx, sec_name, _other);
return Err("couldn't get section data in .eh_frame section");
}
}
let typ = SectionType::EhFrame;
loaded_sections.insert(
shndx,
Arc::new(LoadedSection::new(
typ,
section_name_str_ref(&typ),
Arc::clone(rp_ref),
rodata_offset,
dest_vaddr,
sec_size,
false, // .eh_frame section is not globally visible,
new_crate.clone(),
))
);
rodata_offset += sec_size.next_multiple_of(sec_align);
}
else {
return Err("no rodata_pages were allocated when handling .eh_frame");
}
}
// Finally, any other section type is considered unhandled, so return an error!
else {
// .debug_* sections are handled separately, and are loaded on demand.
if sec_name.starts_with(".debug") {
continue;
}
error!("unhandled section [{}], name: {}, sec: {:?}", shndx, sec_name, sec);
return Err("load_crate_sections(): section with unhandled type, name, or flags!");
}
}
Ok(SectionMetadata {
loaded_sections,
global_sections,
tls_sections,
cls_sections,
data_sections,
})
}
/// The second stage of parsing and loading a new kernel crate,
/// filling in the missing relocation information in the already-loaded sections.
/// It also remaps the `new_crate`'s MappedPages according to each of their section permissions.
fn perform_relocations(
&self,
elf_file: &ElfFile,
new_crate_ref: &StrongCrateRef,
temp_backup_namespace: Option<&CrateNamespace>,
kernel_mmi_ref: &MmiRef,
verbose_log: bool
) -> Result<(), &'static str> {
let mut new_crate = new_crate_ref.lock_as_mut()
.ok_or("BUG: perform_relocations(): couldn't get exclusive mutable access to new_crate")?;
if verbose_log { debug!("=========== moving on to the relocations for crate {} =========", new_crate.crate_name); }
let symtab = find_symbol_table(elf_file)?;
// Fix up the sections that were just loaded, using proper relocation info.
// Iterate over every non-zero relocation section in the file
for sec in elf_file.section_iter().filter(|sec| sec.get_type() == Ok(ShType::Rela) && sec.size() != 0) {
use xmas_elf::sections::SectionData::Rela64;
if verbose_log {
trace!("Found Rela section name: {:?}, type: {:?}, target_sec_index: {:?}",
sec.get_name(elf_file), sec.get_type(), sec.info());
}
// Debug sections are handled separately
if let Ok(name) = sec.get_name(elf_file) {
if name.starts_with(".rela.debug") { // ignore debug special sections for now
continue;
}
}
let rela_array = match sec.get_data(elf_file) {
Ok(Rela64(rela_arr)) => rela_arr,
_ => {
error!("Found Rela section that wasn't able to be parsed as Rela64: {:?}", sec);
return Err("Found Rela section that wasn't able to be parsed as Rela64");
}
};
// The target section is where we write the relocation data to.
// The source section is where we get the data from.
// There is one target section per rela section (`rela_array`), and one source section per rela_entry in this rela section.
// The "info" field in the Rela section specifies which section is the target of the relocation.
// Get the target section (that we already loaded) for this rela_array Rela section.
let target_sec_shndx = sec.info() as usize;
let target_sec = new_crate.sections.get(&target_sec_shndx).ok_or_else(|| {
error!("ELF file error: target section was not loaded for Rela section {:?}!", sec.get_name(elf_file));
"target section was not loaded for Rela section"
})?;
let mut target_sec_data_was_modified = false;
let mut target_sec_dependencies: Vec<StrongDependency> = Vec::new();
#[cfg(internal_deps)]
let mut target_sec_internal_dependencies: Vec<InternalDependency> = Vec::new();
{
let mut target_sec_mapped_pages = target_sec.mapped_pages.lock();
let target_sec_slice: &mut [u8] = target_sec_mapped_pages.as_slice_mut(
0,
target_sec.mapped_pages_offset + target_sec.size,
)?;
// iterate through each relocation entry in the relocation array for the target_sec
for rela_entry in rela_array {
if verbose_log {
trace!(" Rela64 offset: {:#X}, addend: {:#X}, symtab_index: {}, type: {:#X}",
rela_entry.get_offset(), rela_entry.get_addend(), rela_entry.get_symbol_table_index(), rela_entry.get_type());
}
use xmas_elf::symbol_table::Entry;
let source_sec_entry = &symtab[rela_entry.get_symbol_table_index() as usize];
let source_sec_shndx = source_sec_entry.shndx() as usize;
let source_sec_value = source_sec_entry.value() as usize;
if verbose_log {
let source_sec_header_name = source_sec_entry.get_section_header(elf_file, rela_entry.get_symbol_table_index() as usize)
.and_then(|s| s.get_name(elf_file));
trace!(" relevant section [{}]: {:?}, value: {:#X}", source_sec_shndx, source_sec_header_name, source_sec_value);
// trace!(" Entry name {} {:?} vis {:?} bind {:?} type {:?} shndx {} value {} size {}",
// source_sec_entry.name(), source_sec_entry.get_name(&elf_file),
// source_sec_entry.get_other(), source_sec_entry.get_binding(), source_sec_entry.get_type(),
// source_sec_entry.shndx(), source_sec_entry.value(), source_sec_entry.size());
}
let mut source_and_target_in_same_crate = false;
// We first try to get the source section from loaded_sections, which works if the section is in the crate currently being loaded.
let source_sec = match new_crate.sections.get(&source_sec_shndx) {
Some(ss) => {
source_and_target_in_same_crate = true;
Ok(ss.clone())
}
// If we couldn't get the section based on its shndx, it means that the source section wasn't in the crate currently being loaded.
// Thus, we must get the source section's name and check our list of foreign crates to see if it's there.
// At this point, there's no other way to search for the source section besides its name.
None => {
if let Ok(source_sec_name) = source_sec_entry.get_name(elf_file) {
const DATARELRO: &str = ".data.rel.ro.";
let source_sec_name = if source_sec_name.starts_with(DATARELRO) {
source_sec_name.get(DATARELRO.len() ..).ok_or("Couldn't get name of .data.rel.ro. section")?
} else {
source_sec_name
};
// See `cls_macros` for more details.
if source_sec_name == "__THESEUS_CLS_SIZE" {
#[cfg(target_arch = "aarch64")]
{
return Err("encountered `__THESEUS_CLS_SIZE` relocation on AArch64");
}
#[cfg(target_arch = "x86_64")]
{
let cls_size = VirtualAddress::new(usize::MAX).unwrap();
let relocation_entry = RelocationEntry::from_elf_relocation(rela_entry);
write_relocation(
relocation_entry,
target_sec_slice,
target_sec.mapped_pages_offset,
cls_size,
verbose_log,
)?;
continue;
}
} else if source_sec_name == "__THESEUS_TLS_SIZE" {
#[cfg(target_arch = "x86_64")]
let tls_size = VirtualAddress::new(usize::MAX).unwrap();
#[cfg(target_arch = "aarch64")]
let tls_size = VirtualAddress::zero();
let relocation_entry = RelocationEntry::from_elf_relocation(rela_entry);
write_relocation(
relocation_entry,
target_sec_slice,
target_sec.mapped_pages_offset,
tls_size,
verbose_log,
)?;
continue;
}
let demangled = demangle(source_sec_name).to_string();
// search for the symbol's demangled name in the kernel's symbol map
self.get_symbol_or_load(&demangled, temp_backup_namespace, kernel_mmi_ref, verbose_log)
.upgrade()
.ok_or("Couldn't get symbol for foreign relocation entry, nor load its containing crate")
}
else {
let _source_sec_header = source_sec_entry
.get_section_header(elf_file, rela_entry.get_symbol_table_index() as usize)
.and_then(|s| s.get_name(elf_file));
error!("Couldn't get name of source section [{}] {:?}, needed for non-local relocation entry", source_sec_shndx, _source_sec_header);
Err("Couldn't get source section's name, needed for non-local relocation entry")
}
}
}?;
let relocation_entry = RelocationEntry::from_elf_relocation(rela_entry);
write_relocation(
relocation_entry,
target_sec_slice,
target_sec.mapped_pages_offset,
source_sec.virt_addr + source_sec_value,
verbose_log
)?;
target_sec_data_was_modified = true;
if source_and_target_in_same_crate {
// We keep track of relocation information so that we can be aware of and faithfully reconstruct
// inter-section dependencies even within the same crate.
// This is necessary for doing a deep copy of the crate in memory,
// without having to re-parse that crate's ELF file (and requiring the ELF file to still exist)
#[cfg(internal_deps)]
target_sec_internal_dependencies.push(InternalDependency::new(relocation_entry, source_sec_shndx))
}
else {
// tell the source_sec that the target_sec is dependent upon it
let weak_dep = WeakDependent {
section: Arc::downgrade(target_sec),
relocation: relocation_entry,
};
source_sec.inner.write().sections_dependent_on_me.push(weak_dep);
// tell the target_sec that it has a strong dependency on the source_sec
let strong_dep = StrongDependency {
section: Arc::clone(&source_sec),
relocation: relocation_entry,
};
target_sec_dependencies.push(strong_dep);
}
}
}
// If the target section of the relocation was a TLS section,
// that TLS section's initializer data has now changed.
// Thus, we need to invalidate the TLS initializer area's cached data.
if target_sec_data_was_modified &&
(target_sec.typ == SectionType::TlsData || target_sec.typ == SectionType::TlsBss)
{
// debug!("Invalidating TlsInitializer due to relocation written to section {:?}", &*target_sec);
self.tls_initializer.lock().invalidate();
}
// add the target section's dependencies and relocation details all at once
{
let mut target_sec_inner = target_sec.inner.write();
target_sec_inner.sections_i_depend_on.append(&mut target_sec_dependencies);
#[cfg(internal_deps)]
target_sec_inner.internal_dependencies.append(&mut target_sec_internal_dependencies);
}
}
// here, we're done with handling all the relocations in this entire crate
// We need to remap each section's mapped pages with the proper permission bits,
// since we initially mapped them all as writable.
if let Some(ref tp) = new_crate.text_pages {
tp.0.lock().remap(&mut kernel_mmi_ref.lock().page_table, TEXT_SECTION_FLAGS)?;
}
if let Some(ref rp) = new_crate.rodata_pages {
rp.0.lock().remap(&mut kernel_mmi_ref.lock().page_table, RODATA_SECTION_FLAGS)?;
}
// data/bss sections are already mapped properly, since they're supposed to be writable
// By default, we can safely remove the metadata for all private (non-global) .rodata sections
// that do not have any strong dependencies (its `sections_i_depend_on` list is empty).
// If you want all sections to be kept, e.g., for debugging, you can set the below cfg option.
#[cfg(not(keep_private_rodata))]
{
new_crate.sections.retain(|_shndx, sec| {
let should_remove = !sec.global
&& sec.typ == SectionType::Rodata
&& sec.inner.read().sections_i_depend_on.is_empty();
// For an element to be removed, this closure should return `false`.
!should_remove
});
}
Ok(())
}
/// Adds the given symbol to this namespace's symbol map.
/// If the symbol already exists in the symbol map, this replaces the existing symbol with the new one, warning if they differ in size.
/// Returns true if the symbol was added, and false if it already existed and thus was merely replaced.
fn add_symbol(
existing_symbol_map: &mut SymbolMap,
new_section_key: StrRef,
new_section: &StrongSectionRef,
log_replacements: bool,
) -> bool {
match existing_symbol_map.entry(new_section_key) {
qp_trie::Entry::Occupied(mut old_val) => {
if log_replacements {
if let Some(old_sec) = old_val.get().upgrade() {
// debug!(" add_symbol(): replacing section: old: {:?}, new: {:?}", old_sec, new_section);
if new_section.size != old_sec.size {
warn!("Unexpectedly replacing differently-sized section: old: ({}B) {:?}, new: ({}B) {:?}", old_sec.size, old_sec.name, new_section.size, new_section.name);
}
else {
warn!("Replacing new symbol already present: old {:?}, new: {:?}", old_sec.name, new_section.name);
}
}
}
old_val.insert(Arc::downgrade(new_section));
false
}
qp_trie::Entry::Vacant(new_entry) => {
if log_replacements {
debug!(" add_symbol(): Adding brand new symbol: new: {:?}", new_section);
}
new_entry.insert(Arc::downgrade(new_section));
true
}
}
}
/// Adds only *global* symbols in the given `sections` iterator to this namespace's symbol map,
///
/// If a symbol already exists in the symbol map, this replaces the existing symbol but does not count it as a newly-added one.
///
/// Returns the number of *new* unique symbols added.
pub fn add_symbols<'a, I>(
&self,
sections: I,
_log_replacements: bool,
) -> usize
where I: IntoIterator<Item = &'a StrongSectionRef>,
{
self.add_symbols_filtered(sections, |_sec| true, _log_replacements)
}
/// Adds symbols in the given `sections` iterator to this namespace's symbol map,
/// but only sections that are *global* AND for which the given `filter_func` returns true.
///
/// If a symbol already exists in the symbol map, this replaces the existing symbol but does not count it as a newly-added one.
///
/// Returns the number of *new* unique symbols added.
fn add_symbols_filtered<'a, I, F>(
&self,
sections: I,
filter_func: F,
log_replacements: bool,
) -> usize
where I: IntoIterator<Item = &'a StrongSectionRef>,
F: Fn(&LoadedSection) -> bool
{
let mut existing_map = self.symbol_map.lock();
// add all the global symbols to the symbol map, in a way that lets us inspect/log each one
let mut count = 0;
for sec in sections.into_iter() {
let condition = filter_func(sec) && sec.global;
if condition {
// trace!("add_symbols_filtered(): adding symbol {:?}", sec);
let added = CrateNamespace::add_symbol(&mut existing_map, sec.name.clone(), sec, log_replacements);
if added {
count += 1;
}
}
}
count
}
/// Finds the crate that contains the given `VirtualAddress` in its loaded code.
///
/// By default, only executable sections (`.text`) are searched, since typically the only use case
/// for this function is to search for an instruction pointer (program counter) address.
/// However, if `search_all_section_types` is `true`, both the read-only and read-write sections
/// will be included in the search, e.g., `.rodata`, `.data`, `.bss`.
///
/// # Usage
/// This is mostly useful for printing symbol names for a stack trace (backtrace).
/// It is also similar in functionality to the tool `addr2line`,
/// but gives the section itself rather than the line of code.
///
/// # Locking
/// This can obtain the lock on every crate and every section,
/// so to avoid deadlock, please ensure that the caller task does not hold any such locks.
/// It does *not* need to obtain locks on the underlying `MappedPages` regions.
///
/// # Note
/// This is a slow procedure because, in the worst case,
/// it will iterate through **every** loaded crate in this namespace (and its recursive namespace).
pub fn get_crate_containing_address(
&self,
virt_addr: VirtualAddress,
search_all_section_types: bool,
) -> Option<StrongCrateRef> {
// A closure to test whether the given `crate_ref` contains the `virt_addr`.
let crate_contains_vaddr = |crate_ref: &StrongCrateRef| {
let krate = crate_ref.lock_as_ref();
if let Some(ref tp) = krate.text_pages {
if tp.1.contains(&virt_addr) {
return true;
}
}
if search_all_section_types {
if let Some(ref rp) = krate.rodata_pages {
if rp.1.contains(&virt_addr) {
return true;
}
}
if let Some(ref dp) = krate.data_pages {
if dp.1.contains(&virt_addr) {
return true;
}
}
}
false
};
let mut found_crate = None;
// Here, we didn't find the symbol when searching from the starting crate,
// so perform a brute-force search of all crates in this namespace (recursively).
self.for_each_crate(true, |_crate_name, crate_ref| {
if crate_contains_vaddr(crate_ref) {
found_crate = Some(crate_ref.clone());
false // stop iterating, we've found it!
}
else {
true // keep searching
}
});
found_crate
}
/// Finds the section that contains the given `VirtualAddress` in its loaded code.
///
/// By default, only executable sections (`.text`) are searched, since the typical use case
/// for this function is to search for an instruction pointer (program counter) address.
/// However, if `search_all_section_types` is `true`, both the read-only and read-write sections
/// will be included in the search, e.g., `.rodata`, `.data`, `.bss`.
///
/// # Usage
/// This is mostly useful for printing symbol names for a stack trace (backtrace).
/// It is also similar in functionality to the tool `addr2line`,
/// but gives the section itself rather than the line of code.
///
/// # Locking
/// This can obtain the lock on every crate in this namespace and its recursive namespaces,
/// so to avoid deadlock, please ensure that the caller task does not hold any such locks.
///
/// # Note
/// This is a slow procedure because, in the worst case,
/// it will iterate through **every** section in **every** loaded crate
/// in this namespace (and its recursive namespace),
/// not just the publicly-visible (global) sections.
pub fn get_section_containing_address(
&self,
virt_addr: VirtualAddress,
search_all_section_types: bool,
) -> Option<(StrongSectionRef, usize)> {
// First, we find the crate that contains the address, then later we narrow it down.
let containing_crate = self.get_crate_containing_address(virt_addr, search_all_section_types)?;
let crate_locked = containing_crate.lock_as_ref();
// We try to find the *most specific* section that contains the `virt_addr`.
// If sections have been merged, there will be a merged section that contains `virt_addr`,
// but also potentially a section for an individual symbol that is a better, more descriptive match.
// For example, `my_crate::foo()` will exist in `my_crate`'s `.text` section,
// but may also contained in `my_crate`'s `foo` section, which is a better return value here.
let mut merged_section_and_offset = None;
// Second, we find the section in that crate that contains the address.
for sec in crate_locked.sections.values() {
// .text sections are always included, other sections are included if requested.
let eligible_section = sec.typ == SectionType::Text || search_all_section_types;
// If the section's address bounds contain the address, then we've found it.
// Only a single section can contain the address, so it's safe to stop once we've found a match.
if eligible_section
&& sec.virt_addr <= virt_addr
&& virt_addr.value() < (sec.virt_addr.value() + sec.size)
{
let offset = virt_addr.value() - sec.virt_addr.value();
merged_section_and_offset = Some((sec.clone(), offset));
if sec.name.as_str() == sec.typ.name() {
// If this section is a merged section, it will have the standard name
// for its section type, e.g., ".text", ".data", ".rodata", etc.
// Thus, we should keep looking to find a better, more specific symbol section.
} else {
// If the name is *not* that standard name, then we have found the
// "more specific" symbol's section that contains this `virt_addr`.
// We can stop looking because only one symbol section can possibly contain it.
break;
}
}
}
merged_section_and_offset
}
/// Like [`get_symbol()`](#method.get_symbol), but also returns the exact `CrateNamespace` where the symbol was found.
pub fn get_symbol_and_namespace(&self, demangled_full_symbol: &str) -> Option<(WeakSectionRef, &CrateNamespace)> {
let weak_symbol = self.symbol_map.lock().get(demangled_full_symbol.as_bytes()).cloned();
weak_symbol.map(|sym| (sym, self))
// search the recursive namespace if the symbol cannot be found in this namespace
.or_else(|| self.recursive_namespace.as_ref().and_then(|rns| rns.get_symbol_and_namespace(demangled_full_symbol)))
}
/// A convenience function that returns a weak reference to the `LoadedSection`
/// that matches the given name (`demangled_full_symbol`),
/// if it exists in this namespace's or its recursive namespace's symbol map.
/// Otherwise, it returns None if the symbol does not exist.
fn get_symbol_internal(&self, demangled_full_symbol: &str) -> Option<WeakSectionRef> {
self.get_symbol_and_namespace(demangled_full_symbol).map(|(sym, _ns)| sym)
}
/// Finds the corresponding `LoadedSection` reference for the given fully-qualified symbol string.
/// Searches this namespace first, and then its recursive namespace as well.
pub fn get_symbol(&self, demangled_full_symbol: &str) -> WeakSectionRef {
self.get_symbol_internal(demangled_full_symbol).unwrap_or_default()
}
/// Finds the corresponding `LoadedSection` reference for the given fully-qualified symbol string,
/// similar to the simpler function `get_symbol()`, but takes the additional step of trying to
/// automatically find and/or load the crate containing that symbol
/// (and does so recursively for any of its crate dependencies).
///
/// (1) First, it recursively searches this namespace's and its recursive namespaces' symbol maps,
/// and returns the symbol if already loaded.
///
/// (2) Second, if the symbol is missing from this namespace, it looks in the `temp_backup_namespace`.
/// If we find it there, then we add that symbol and its containing crate as a shared crate in this namespace.
///
/// (3) Third, if this namespace has `fuzzy_symbol_matching` enabled, it searches the backup namespace
/// for symbols that match the given `demangled_full_symbol` without the hash suffix.
///
/// (4) Fourth, if the missing symbol isn't in the backup namespace either,
/// try to load its containing crate from the object file.
/// This can only be done for symbols that have a leading crate name, such as "my_crate::foo";
/// if a symbol was given the `no_mangle` attribute, then we will not be able to find it,
/// and that symbol's containing crate should be manually loaded before invoking this.
///
///
/// # Arguments
/// * `demangled_full_symbol`: a fully-qualified symbol string, e.g., "my_crate::MyStruct::foo::h843a9ea794da0c24".
/// * `temp_backup_namespace`: the `CrateNamespace` that should be temporarily searched (just during this call)
/// for the missing symbol.
/// If `temp_backup_namespace` is `None`, then only this namespace (and its recursive namespaces) will be searched.
/// * `kernel_mmi_ref`: a reference to the kernel's `MemoryManagementInfo`, which must not be locked.
pub fn get_symbol_or_load(
&self,
demangled_full_symbol: &str,
temp_backup_namespace: Option<&CrateNamespace>,
kernel_mmi_ref: &MmiRef,
verbose_log: bool
) -> WeakSectionRef {
// First, see if the section for the given symbol is already available and loaded
// in either this namespace or its recursive namespace
if let Some(weak_sec) = self.get_symbol_internal(demangled_full_symbol) {
return weak_sec;
}
// If not, our second option is to check the temp_backup_namespace to see if that namespace already has the section we want.
// If we can find it there, that saves us the effort of having to load the crate again from scratch.
if let Some(backup) = temp_backup_namespace {
// info!("Symbol \"{}\" not initially found, attempting to load it from backup namespace {:?}",
// demangled_full_symbol, backup.name);
if let Some(sec) = self.get_symbol_from_backup_namespace(demangled_full_symbol, backup, false, verbose_log) {
return Arc::downgrade(&sec);
}
}
// Try to fuzzy match the symbol to see if a single match for it has already been loaded into the backup namespace.
// This is basically the same code as the above temp_backup_namespace conditional, but checks to ensure there aren't multiple fuzzy matches.
if self.fuzzy_symbol_matching {
if let Some(backup) = temp_backup_namespace {
// info!("Symbol \"{}\" not initially found, attempting to load it from backup namespace {:?}",
// demangled_full_symbol, backup.name);
if let Some(sec) = self.get_symbol_from_backup_namespace(demangled_full_symbol, backup, true, verbose_log) {
return Arc::downgrade(&sec);
}
}
}
// Finally, try to load the crate that may contain the missing symbol.
if let Some(weak_sec) = self.load_crate_for_missing_symbol(demangled_full_symbol, temp_backup_namespace, kernel_mmi_ref, verbose_log) {
weak_sec
} else {
#[cfg(not(loscd_eval))]
warn!("Symbol \"{}\" not found. Try loading the specific crate manually first.", demangled_full_symbol);
Weak::default() // same as returning None, since it must be upgraded to an Arc before being used
}
}
/// Looks for the given `demangled_full_symbol` in the `temp_backup_namespace` and returns a reference to the matching section.
///
/// This is the second and third attempts to find a symbol within [`get_symbol_or_load()`](#method.get_symbol_or_load).
fn get_symbol_from_backup_namespace(
&self,
demangled_full_symbol: &str,
temp_backup_namespace: &CrateNamespace,
fuzzy_matching: bool,
verbose_log: bool,
) -> Option<StrongSectionRef> {
let mut _fuzzy_matched_symbol_name: Option<String> = None;
let (weak_sec, _found_in_ns) = if !fuzzy_matching {
// use exact (non-fuzzy) matching
temp_backup_namespace.get_symbol_and_namespace(demangled_full_symbol)?
} else {
// use fuzzy matching (ignoring the symbol hash suffix)
let fuzzy_matches = temp_backup_namespace.find_symbols_starting_with_and_namespace(LoadedSection::section_name_without_hash(demangled_full_symbol));
match fuzzy_matches.as_slice() {
[(sec_name, weak_sec, _found_in_ns)] => {
_fuzzy_matched_symbol_name = Some(sec_name.clone());
(weak_sec.clone(), *_found_in_ns)
}
fuzzy_matches => {
warn!("Cannot resolve dependency because there are {} fuzzy matches for symbol {:?} in backup namespace {:?}\n\t{:?}",
fuzzy_matches.len(),
demangled_full_symbol,
temp_backup_namespace.name,
fuzzy_matches.iter().map(|tup| &tup.0).collect::<Vec<_>>()
);
return None;
}
}
};
let sec = weak_sec.upgrade().or_else(|| {
error!("Found matching symbol \"{}\" in backup namespace, but unexpectedly couldn't upgrade it to a strong section reference!", demangled_full_symbol);
None
})?;
// Here, we found the matching section in the temp_backup_namespace.
let parent_crate_ref = {
sec.parent_crate.upgrade().or_else(|| {
error!("BUG: Found symbol \"{}\" in backup namespace, but unexpectedly couldn't get its parent crate!", demangled_full_symbol);
None
})?
};
let parent_crate_name = {
let parent_crate = parent_crate_ref.lock_as_ref();
// Here, there is a misguided potential for optimization: add all symbols from the parent_crate into the current namespace.
// While this would save lookup/loading time if future symbols were needed from this crate,
// we *cannot* do this because it violates the expectations of certain namespaces.
// For example, some namespaces may want to use just *one* symbol from another namespace's crate, not all of them.
// Thus, we just add the one symbol for `sec` to this namespace.
self.add_symbols(Some(sec.clone()).iter(), verbose_log);
parent_crate.crate_name.clone()
};
#[cfg(not(loscd_eval))]
info!("Symbol {:?} not initially found, using {}symbol {} from crate {:?} in backup namespace {:?} in new namespace {:?}",
demangled_full_symbol,
if fuzzy_matching { "fuzzy-matched " } else { "" },
_fuzzy_matched_symbol_name.unwrap_or_default(),
parent_crate_name,
_found_in_ns.name,
self.name
);
// We add a shared reference to that section's parent crate to this namespace as well,
// to prevent that crate from being dropped while this namespace still relies on it.
self.crate_tree.lock().insert(parent_crate_name, parent_crate_ref);
Some(sec)
}
/// Attempts to find and load the crate that may contain the given `demangled_full_symbol`.
///
/// If successful, the new crate is loaded into this `CrateNamespace` and the symbol's section is returned.
/// If this namespace does not contain any matching crates, its recursive namespaces are searched as well.
///
/// This approach only works for mangled symbols that contain a crate name, such as "my_crate::foo".
/// If "foo()" was marked no_mangle, then we don't know which crate to load because there is no "my_crate::" prefix before it.
///
/// Note: while attempting to find the missing `demangled_full_symbol`, this function may end up
/// loading *multiple* crates into this `CrateNamespace` or its recursive namespaces, due to two reasons:
/// 1. The `demangled_full_symbol` may have multiple crate prefixes within it.
/// * For example, `<page_allocator::AllocatedPages as core::ops::drop::Drop>::drop::h55e0a4c312ccdd63`
/// contains two possible crate prefixes: `page_allocator` and `core`.
/// 2. There may be multiple versions of a single crate.
///
/// Possible crates are iteratively loaded and searched until the missing symbol is found.
/// Currently, crates that were loaded but did *not* contain the missing symbol are *not* unloaded,
/// but you could manually unload them later with no adverse effects to reclaim memory.
///
/// This is the final attempt to find a symbol within [`CrateNamespace::get_symbol_or_load()`].
fn load_crate_for_missing_symbol(
&self,
demangled_full_symbol: &str,
temp_backup_namespace: Option<&CrateNamespace>,
kernel_mmi_ref: &MmiRef,
verbose_log: bool,
) -> Option<WeakSectionRef> {
// Some symbols may have multiple potential containing crates, so we try to load each one to find the missing symbol.
for potential_crate_name in get_containing_crate_name(demangled_full_symbol) {
let potential_crate_name = format!("{potential_crate_name}-");
// Try to find and load the missing crate object file from this namespace's directory or its recursive namespace's directory,
// (or from the backup namespace's directory set).
// The object files from the recursive namespace(s) are appended after the files in the initial namespace,
// so they'll only be searched if the symbol isn't found in the current namespace.
for (potential_crate_file, ns_of_crate_file) in self.method_get_crate_object_files_starting_with(&potential_crate_name) {
let potential_crate_file_path = PathBuf::from(potential_crate_file.lock().get_absolute_path());
// Check to make sure this crate is not already loaded into this namespace (or its recursive namespace).
if self.get_crate(crate_name_from_path(&potential_crate_file_path)?).is_some() {
trace!(" (skipping already-loaded crate {:?})", potential_crate_file_path);
continue;
}
#[cfg(not(loscd_eval))]
info!("Symbol {:?} not initially found in namespace {:?}, attempting to load crate {:?} into namespace {:?} that may contain it.",
demangled_full_symbol, self.name, potential_crate_name, ns_of_crate_file.name);
match ns_of_crate_file.load_crate(&potential_crate_file, temp_backup_namespace, kernel_mmi_ref, verbose_log) {
Ok((_new_crate_ref, _num_new_syms)) => {
// try again to find the missing symbol, now that we've loaded the missing crate
if let Some(sec) = ns_of_crate_file.get_symbol_internal(demangled_full_symbol) {
return Some(sec);
} else {
// the missing symbol wasn't in this crate, continue to load the other potential containing crates.
trace!("Loaded symbol's containing crate {:?}, but still couldn't find the symbol {:?}.",
potential_crate_file_path, demangled_full_symbol);
}
}
Err(_e) => {
error!("Found symbol's (\"{}\") containing crate, but couldn't load the crate file {:?}. Error: {:?}",
demangled_full_symbol, potential_crate_file_path, _e);
// We *could* return an error here, but we might as well continue on to trying to load other crates.
}
}
}
}
warn!("Couldn't find/load crate(s) that may contain the missing symbol {:?}", demangled_full_symbol);
None
}
/// Returns a copied list of the corresponding `LoadedSection`s
/// with names that start with the given `symbol_prefix`.
/// This will also search the recursive namespace's symbol map.
///
/// This method causes allocation because it creates a copy
/// of the matching entries in the symbol map.
///
/// # Example
/// The symbol map contains `my_crate::foo::h843a613894da0c24` and
/// `my_crate::foo::h933a635894ce0f12`.
/// Calling `find_symbols_starting_with("my_crate::foo")` will return
/// a vector containing both sections, which can then be iterated through.
pub fn find_symbols_starting_with(&self, symbol_prefix: &str) -> Vec<(String, WeakSectionRef)> {
let mut syms: Vec<(String, WeakSectionRef)> = self.symbol_map.lock()
.iter_prefix(symbol_prefix.as_bytes())
.map(|(k, v)| (String::from(k.as_str()), v.clone()))
.collect();
if let Some(mut syms_recursive) = self.recursive_namespace.as_ref().map(|r_ns| r_ns.find_symbols_starting_with(symbol_prefix)) {
syms.append(&mut syms_recursive);
}
syms
}
/// Similar to `find_symbols_starting_with`, but also includes a reference to the exact `CrateNamespace`
/// where the matching symbol was found.
pub fn find_symbols_starting_with_and_namespace(&self, symbol_prefix: &str) -> Vec<(String, WeakSectionRef, &CrateNamespace)> {
let mut syms: Vec<(String, WeakSectionRef, &CrateNamespace)> = self.symbol_map.lock()
.iter_prefix(symbol_prefix.as_bytes())
.map(|(k, v)| (String::from(k.as_str()), v.clone(), self))
.collect();
if let Some(mut syms_recursive) = self.recursive_namespace.as_ref().map(|r_ns| r_ns.find_symbols_starting_with_and_namespace(symbol_prefix)) {
syms.append(&mut syms_recursive);
}
syms
}
/// Returns a weak reference to the `LoadedSection` whose name beings with the given `symbol_prefix`,
/// *if and only if* the symbol map only contains a single possible matching symbol.
/// This will also search the recursive namespace's symbol map.
///
/// # Important Usage Note
/// To avoid greedily matching more symbols than expected, you may wish to end the `symbol_prefix` with "`::`".
/// This may provide results more in line with the caller's expectations; see the last example below about a trailing "`::`".
/// This works because the delimiter between a symbol and its trailing hash value is "`::`".
///
/// # Example
/// * The symbol map contains `my_crate::foo::h843a613894da0c24`
/// and no other symbols that start with `my_crate::foo`.
/// Calling `get_symbol_starting_with("my_crate::foo")` will return
/// a weak reference to the section `my_crate::foo::h843a613894da0c24`.
/// * The symbol map contains `my_crate::foo::h843a613894da0c24` and
/// `my_crate::foo::h933a635894ce0f12`.
/// Calling `get_symbol_starting_with("my_crate::foo")` will return
/// an empty (default) weak reference, which is the same as returing None.
/// * (Important) The symbol map contains `my_crate::foo::h843a613894da0c24` and
/// `my_crate::foo_new::h933a635894ce0f12`.
/// Calling `get_symbol_starting_with("my_crate::foo")` will return
/// an empty (default) weak reference, which is the same as returing None,
/// because it will match both `foo` and `foo_new`.
/// To match only `foo`, call this function as `get_symbol_starting_with("my_crate::foo::")`
/// (note the trailing "`::`").
pub fn get_symbol_starting_with(&self, symbol_prefix: &str) -> WeakSectionRef {
self.get_symbol_starting_with_internal(symbol_prefix)
.unwrap_or_default()
}
/// This is an internal version of method: [`get_symbol_starting_with()`](#method.get_symbol_starting_with)
/// that returns an Option to allow easier recursive use.
fn get_symbol_starting_with_internal(&self, symbol_prefix: &str) -> Option<WeakSectionRef> {
// First, we see if there's a single matching symbol in this namespace.
let map = self.symbol_map.lock();
let mut iter = map.iter_prefix(symbol_prefix.as_bytes()).map(|tuple| tuple.1);
let symbol_in_this_namespace = iter.next()
.filter(|_| iter.next().is_none()) // ensure single element
.cloned();
// Second, we see if there's a single matching symbol in the recursive namespace.
let symbol_in_recursive_namespace = self.recursive_namespace.as_ref().and_then(|r_ns| r_ns.get_symbol_starting_with_internal(symbol_prefix));
// There can only be one matching crate across all recursive namespaces.
symbol_in_this_namespace.xor(symbol_in_recursive_namespace)
}
/// Simple debugging function that returns the entire symbol map as a String.
/// This includes only symbols from this namespace, and excludes symbols from recursive namespaces.
pub fn dump_symbol_map(&self) -> String {
use core::fmt::Write;
let mut output: String = String::new();
let sysmap = self.symbol_map.lock();
match write!(&mut output, "{:?}", sysmap.keys().collect::<Vec<_>>()) {
Ok(_) => output,
_ => String::from("(error)"),
}
}
/// Same as [`dump_symbol_map()`](#method.dump_symbol_map),
/// but includes symbols from recursive namespaces.
pub fn dump_symbol_map_recursive(&self) -> String {
let mut syms = self.dump_symbol_map();
if let Some(ref r_ns) = self.recursive_namespace {
let syms_recursive = r_ns.dump_symbol_map_recursive();
syms = format!("{syms}\n{syms_recursive}");
}
syms
}
}
/// A convenience wrapper around a new crate's data items that are generated
/// when iterating over and loading its sections.
struct SectionMetadata {
loaded_sections: HashMap<usize, Arc<LoadedSection>>,
global_sections: BTreeSet<usize>,
tls_sections: BTreeSet<usize>,
cls_sections: BTreeSet<usize>,
data_sections: BTreeSet<usize>,
}
/// A convenience wrapper for a set of the three possible types of `MappedPages`
/// that can be allocated and mapped for a single `LoadedCrate`.
struct SectionPages {
/// MappedPages that will hold any and all executable sections: `.text`
/// and their bounds expressed as `VirtualAddress`es.
executable_pages: Option<(MappedPages, Range<VirtualAddress>)>,
/// MappedPages that will hold any and all read-only sections: `.rodata`, `.eh_frame`, `.gcc_except_table`
/// and their bounds expressed as `VirtualAddress`es.
read_only_pages: Option<(MappedPages, Range<VirtualAddress>)>,
/// MappedPages that will hold any and all read-write sections: `.data` and `.bss`
/// and their bounds expressed as `VirtualAddress`es.
read_write_pages: Option<(MappedPages, Range<VirtualAddress>)>,
}
/// The range of virtual addresses from which we allocate pages for executable .text sections.
///
/// This is mostly an architecture-specific design choice (hopefully a temporary one):
/// * On aarch64, even with the large code model, we are not (yet) able to generate
/// code with branch instructions (call/jump) that can address instructions more than
/// 128 MiB away from the current instruction.
/// Thus, we restrict the range of .text section locations to ensure they are within 128 MiB.
/// At some point in the future, this will be a limitation, but not for a long, long time.
/// * On x86_64, this is not necessary, so the range is `None`.
pub const KERNEL_TEXT_ADDR_RANGE: Option<PageRange> = {
#[cfg(target_arch = "x86_64")] {
None
}
#[cfg(target_arch = "aarch64")] {
const ONE_MIB: usize = 0x10_0000;
let start_vaddr = VirtualAddress::new_canonical(kernel_config::memory::KERNEL_OFFSET);
let end_vaddr = VirtualAddress::new_canonical(start_vaddr.value() + (128 * ONE_MIB) - 1);
Some(PageRange::new(
// the start of the base kernel image's .text section.
memory::Page::containing_address(start_vaddr),
// the start of the base kernel image's .text section, plus 128 MiB.
memory::Page::containing_address(end_vaddr),
))
}
};
/// Allocates and maps memory sufficient to hold the sections that are found in the given `ElfFile`.
/// Only sections that are marked "allocated" (`ALLOC`) in the ELF object file will contribute to the mappings' sizes.
fn allocate_section_pages(elf_file: &ElfFile, kernel_mmi_ref: &MmiRef) -> Result<SectionPages, &'static str> {
// Calculate how many bytes (and thus how many pages) we need for each of the three section types.
//
// If there are multiple .text sections, they will all exist at the beginning of the object file,
// so we simply find the end of the last .text section and use that as the end bounds.
let (exec_bytes, ro_bytes, rw_bytes): (usize, usize, usize) = {
let mut text_max_offset = 0;
let mut ro_bytes = 0;
let mut rw_bytes = 0;
for (shndx, sec) in elf_file.section_iter().enumerate() {
let sec_flags = sec.flags();
// Skip non-allocated sections; they don't need to be loaded into memory
if sec_flags & SHF_ALLOC == 0 {
continue;
}
// Zero-sized sections may be aliased references to the next section in the ELF file,
// but only if they have the same offset.
// The empty .text section at the start of each object file should be ignored.
let sec = if (sec.size() == 0) && (sec.get_name(elf_file) != Ok(".text")) {
// warn!("Unlikely scenario: found zero-sized sec {:X?}", sec);
let next_sec = elf_file.section_header((shndx + 1) as u16)
.map_err(|_| "couldn't get next section for a zero-sized section")?;
if next_sec.offset() == sec.offset() {
// warn!("Using next_sec {:X?} instead of zero-sized sec {:X?}", next_sec, sec);
next_sec
} else {
sec
}
} else {
sec
};
let size = sec.size() as usize;
let align = sec.align() as usize;
let addend = size.next_multiple_of(align);
// filter flags for ones we care about (we already checked that it's loaded (SHF_ALLOC))
let is_write = sec_flags & SHF_WRITE == SHF_WRITE;
let is_exec = sec_flags & SHF_EXECINSTR == SHF_EXECINSTR;
let is_tls = sec_flags & SHF_TLS == SHF_TLS;
let is_cls = sec_flags & CLS_SECTION_FLAG == CLS_SECTION_FLAG;
// trace!(" Looking at sec {:?}, size {:#X}, align {:#X} --> addend {:#X}", sec.get_name(elf_file), size, align, addend);
if is_exec {
// this includes only .text sections
text_max_offset = core::cmp::max(text_max_offset, (sec.offset() as usize) + addend);
}
else if is_tls {
// TLS sections are included as part of read-only pages,
// but we only need to allocate space for .tdata sections, not .tbss.
if sec.get_type() == Ok(ShType::ProgBits) {
ro_bytes += addend;
}
// Ignore .tbss sections, which have type `NoBits`.
} else if is_cls {
if sec.get_type() == Ok(ShType::ProgBits) {
ro_bytes += addend;
} else {
return Err("CLS section had unexpected type");
}
} else if is_write {
// this includes both .bss and .data sections
rw_bytes += addend;
}
else {
// this includes .rodata, plus special sections like .eh_frame and .gcc_except_table
ro_bytes += addend;
}
}
(text_max_offset, ro_bytes, rw_bytes)
};
// trace!("\n\texec_bytes: {exec_bytes} {exec_bytes:#X}\n\tro_bytes: {ro_bytes} {ro_bytes:#X}\n\trw_bytes: {rw_bytes} {rw_bytes:#X}");
// Allocate contiguous virtual memory pages for each section and map them to random frames as writable.
// We must allocate these pages separately because they use different flags.
let alloc_sec = |size_in_bytes: usize, within_range: Option<&PageRange>, flags: PteFlags| {
let allocated_pages = if let Some(range) = within_range {
allocate_pages_by_bytes_in_range(size_in_bytes, range)
.map_err(|_| "Couldn't allocate pages in text section address range")?
} else {
allocate_pages_by_bytes(size_in_bytes)
.ok_or("Couldn't allocate pages for new section")?
};
kernel_mmi_ref.lock().page_table.map_allocated_pages(
allocated_pages,
flags.valid(true).writable(true)
)
};
let executable_pages = if exec_bytes > 0 {
Some(alloc_sec(exec_bytes, KERNEL_TEXT_ADDR_RANGE.as_ref(), TEXT_SECTION_FLAGS)?)
} else {
None
};
let read_only_pages = if ro_bytes > 0 {
Some(alloc_sec(ro_bytes, None, RODATA_SECTION_FLAGS)?)
} else {
None
};
let read_write_pages = if rw_bytes > 0 {
Some(alloc_sec(rw_bytes, None, DATA_BSS_SECTION_FLAGS)?)
} else {
None
};
let range_tuple = |mp: MappedPages, size_in_bytes: usize| {
let start = mp.start_address();
(mp, start..(start + size_in_bytes))
};
Ok(SectionPages {
executable_pages: executable_pages.map(|mp| range_tuple(mp, exec_bytes)),
read_only_pages: read_only_pages .map(|mp| range_tuple(mp, ro_bytes)),
read_write_pages: read_write_pages.map(|mp| range_tuple(mp, rw_bytes)),
})
}
#[allow(dead_code)]
fn dump_dependent_crates(krate: &LoadedCrate, prefix: String) {
for weak_crate_ref in krate.crates_dependent_on_me() {
let strong_crate_ref = weak_crate_ref.upgrade().unwrap();
let strong_crate = strong_crate_ref.lock_as_ref();
debug!("{}{}", prefix, strong_crate.crate_name);
dump_dependent_crates(&strong_crate, format!("{prefix} "));
}
}
#[allow(dead_code)]
fn dump_weak_dependents(sec: &LoadedSection, prefix: String) {
let sec_inner = sec.inner.read();
if !sec_inner.sections_dependent_on_me.is_empty() {
debug!("{}Section \"{}\": sections dependent on me (weak dependents):", prefix, sec.name);
for weak_dep in &sec_inner.sections_dependent_on_me {
if let Some(wds) = weak_dep.section.upgrade() {
let prefix = format!("{prefix} "); // add two spaces of indentation to the prefix
dump_weak_dependents(&wds, prefix);
}
else {
debug!("{}ERROR: weak dependent failed to upgrade()", prefix);
}
}
}
else {
debug!("{}Section \"{}\" (no weak dependents)", prefix, sec.name);
}
}
/// Returns a reference to the symbol table in the given `ElfFile`.
pub fn find_symbol_table<'e>(elf_file: &'e ElfFile)
-> Result<&'e [xmas_elf::symbol_table::Entry64], &'static str>
{
use xmas_elf::sections::SectionData::SymbolTable64;
let symtab_data = elf_file.section_iter()
.find(|sec| sec.get_type() == Ok(ShType::SymTab))
.ok_or("no symtab section")
.and_then(|s| s.get_data(elf_file));
match symtab_data {
Ok(SymbolTable64(symtab)) => Ok(symtab),
_ => {
Err("no symbol table found. Was file stripped?")
}
}
}
/// Convenience function for calculating the address range of a MappedPages object.
fn mp_range(mp_ref: &Arc<Mutex<MappedPages>>) -> Range<VirtualAddress> {
let mp = mp_ref.lock();
mp.start_address()..(mp.start_address() + mp.size_in_bytes())
}