1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
//! The Work Queue (WQ) contains a contiguous memory buffer used by SW to post I/O requests (WQEs) for HCA execution.
//! A Work Request is posted to the HCA by writing to one or more Work Queue Elements (WQE) of the WQ and
//! ringing the DoorBell, notifying the HCA that request has been posted.
//! A WQ is created for every SQ and RQ and is comprised of WQE Basic Blocks (WQEBBs) which are 64 byte units.
//!
//! This module defines the context used to initialize a WQ, layout of WQ Doorbell Records, the layout of WQEBBs and related functions.
//!
//! (PRM Section 8.8: Work Queues)
//!
use zerocopy::{U32, FromBytes};
use volatile::{ReadOnly, Volatile};
use byteorder::BigEndian;
use memory::PhysicalAddress;
use num_enum::TryFromPrimitive;
use crate::log_page_size;
/// The layout of a doorbell record in memory.
/// A doorbell should be created for each SQ/RQ pair, and its address passed to the HW at time of SQ/RQ creation.
///
/// (PRM Section 8.8.2: Doorbell Record)
#[derive(FromBytes, Default)]
#[repr(C)]
pub struct DoorbellRecord {
/// Receive Counter (aka wqe_counter).
/// This counter stores the number of receive WQEs posted since creation.
pub(crate) rcv_counter: Volatile<U32<BigEndian>>,
/// Send Counter (aka sq_wqebb_counter).
/// This counter stores the number of send WQEs posted since creation.
pub(crate) send_counter: Volatile<U32<BigEndian>>,
}
const _: () = assert!(core::mem::size_of::<DoorbellRecord>() == 8);
/// The possible formats for a WQ buffer.
#[derive(Debug, TryFromPrimitive)]
#[repr(u32)]
enum WQType {
LinkedList = 0,
Cyclic = 1,
LinkedListStriding = 2,
CyclicStriding = 3
}
/// A struct representing the layout of a WQ in memory.
/// A WQ is part of the SQ and RQ context.
///
/// (PRM Table 109: Work Queue Format)
#[derive(FromBytes, Default)]
#[repr(C)]
pub(crate) struct WorkQueue {
/// A multi-part field:
/// * `wq_type`: a value of [`WQType`], occupies bits [31:28]
/// * `wq_signature`: if set, WQE signature will be checked on this WQ, occupies bit 27
/// * `end_padding_mode`: if incoming packet should be padded, occupies bits [26:25]
/// * `cd_slave`: if set, WQ is a recipient of CD doorbells via the master SQ, occupies bit 24
wq_type_signature: Volatile<U32<BigEndian>>,
/// A multi-part field:
/// * `page_offset`: page offset in quanta of (page_size / 64), occupies bits [20:16]
/// * `lwm`: limit water mark (disabled when 0), when WQE count drops below this limit, an event is fired, occupies bits [15:0]
page_offset_lwm: Volatile<U32<BigEndian>>,
/// protection domain, occupies bits [23:0]
pd: Volatile<U32<BigEndian>>,
/// UAR number allocated for ringing DoorBells for this WQ, occupies bits [23:0]
uar_page: Volatile<U32<BigEndian>>,
/// upper 4 bytes of physical address of DB Record
dbr_addr_h: Volatile<U32<BigEndian>>,
/// lower 4 bytes of physical address of DB Record
dbr_addr_l: Volatile<U32<BigEndian>>,
/// current HW stride index, points to the next stride to be consumed by HW
hw_counter: ReadOnly<U32<BigEndian>>,
/// current SW WQ WQE index, points to the next stride to be produced by SW
sw_counter: ReadOnly<U32<BigEndian>>,
/// A multi-part field:
/// * `log_wq_stride`: the size of a WQ stride equals 2^log_wq_stride, occupies bits [19:16]
/// * `log_wq_pg_sz`: log (base 2) of page size in units of 4KiB, occupies bits [12:8]
/// * `log_wq_sz`: log (base 2) of the WQ size (in entries), occupies bits [4:0] TODO: check again
log_wq_stride_pg_sz_sz: Volatile<U32<BigEndian>>,
single_stride_log_num_of_bytes: Volatile<U32<BigEndian>>,
_padding1: [u64; 19],
}
const _: () = assert!(core::mem::size_of::<WorkQueue>() == 192);
impl WorkQueue {
/// Create and initialize the fields of the WQ for a SQ or RQ context.
/// This is then passed to the HCA as part of the Context when creating the queue.
///
/// # Arguments
/// * `pd`: protection domain number
/// * `db_addr`: physical address of the doorbell record
/// * `wq_size`: number of WQ entries
/// * `wqe_size_in_bytes`: size of the WQE
fn init(pd: u32, db_addr: PhysicalAddress, wq_size: u32, wqe_size_in_bytes: u32) -> WorkQueue {
const WQ_TYPE_SHIFT: u32 = 28;
const PD_MASK: u32 = 0xFF_FFFF;
const WQ_STRIDE_SHIFT: u32 = 16;
const WQ_PAGE_SIZE_SHIFT: u32 = 8;
// set all fields to zero
let mut wq = WorkQueue::default();
wq.wq_type_signature.write(U32::new((WQType::Cyclic as u32) << WQ_TYPE_SHIFT));
wq.pd.write(U32::new(pd & PD_MASK));
wq.dbr_addr_h.write(U32::new((db_addr.value() >> 32) as u32));
wq.dbr_addr_l.write(U32::new(db_addr.value() as u32));
// the stride of the WQE is equal to the size of the WQE
let log_wq_stride = libm::log2(wqe_size_in_bytes as f64) as u32;
let log_wq_size = libm::log2(wq_size as f64) as u32;
let log_wq_page_size = log_page_size(wq_size * wqe_size_in_bytes);
wq.log_wq_stride_pg_sz_sz.write(U32::new((log_wq_stride << WQ_STRIDE_SHIFT) | (log_wq_page_size << WQ_PAGE_SIZE_SHIFT) | log_wq_size));
wq
}
/// Create and initialize the fields of the WQ for a SQ context.
/// This is then passed to the HCA as part of the SQ Context when creating the SQ.
///
/// # Arguments
/// * `pd`: protection domain number
/// * `uar_page`: UAR page number (only provided for a SQ)
/// * `db_addr`: physical address of the doorbell record
/// * `wq_size`: number of WQ entries
pub fn init_sq(pd: u32, uar_page: u32, db_addr: PhysicalAddress, wq_size: u32) -> WorkQueue {
const UAR_PAGE_MASK: u32 = 0xFF_FFFF;
let mut wq = Self::init(pd, db_addr, wq_size, core::mem::size_of::<WorkQueueEntrySend>() as u32);
wq.uar_page.write(U32::new(uar_page & UAR_PAGE_MASK));
wq
}
pub fn init_rq(pd: u32, db_addr: PhysicalAddress, wq_size: u32) -> WorkQueue {
Self::init(pd, db_addr, wq_size, core::mem::size_of::<WorkQueueEntryReceive>() as u32)
}
/// Offset that this context is written to in the mailbox buffer
pub(crate) fn mailbox_offset() -> usize { 0x10 + 0x30 }
}
/// The possible values of the opcode field in the control segment of a WQE
#[derive(Debug, TryFromPrimitive)]
#[repr(u8)]
pub(crate) enum WQEOpcode {
/// WQE with this opcode creates a completion, but does nothing else
Nop = 0x0,
SndInv = 0x1,
RDMAWrite = 0x8,
RDMAWriteWithImmediate = 0x9,
Send = 0xA,
SendWithImmediate = 0xB,
LargeSendOffload = 0xE,
Wait = 0xF,
RDMARead = 0x10,
AtomicCompareAndSwap = 0x11,
AtomicFetchAndAdd = 0x12,
AtomicMaskedCompareAndSwap = 0x14,
AtomicMaskedFetchAndAdd = 0x15,
ReceiveEn = 0x16,
SendEn = 0x17,
SetPsv = 0x20,
Dump = 0x23,
Umr = 0x25
}
/// WQEs are built from multiple segments.
/// In the case of Send WQEs, there are three:
/// * control segment
/// * eth segment
/// * memory pointer data segment
#[derive(FromBytes, Default)]
#[repr(C)]
pub struct WorkQueueEntrySend {
/// This segment contains control information of the WQE
pub(crate) control: ControlSegment,
/// This segment contains inlined Ethernet packet headers
eth: EthSegment,
/// This segment contains the length and address of the packet buffer
data: MemoryPointerDataSegment
}
const _: () = assert!(core::mem::size_of::<WorkQueueEntrySend>() == 64);
impl WorkQueueEntrySend {
/// set a WQE to an initial state
pub fn init(&mut self) {
*self = WorkQueueEntrySend::default();
}
/// Fill the control, ethernet and data segments of the WQE to send packets.
///
/// # Arguments
/// * `wqe_index`: WQEBB number of the first block of this WQE // TODO? seems to be wqe_counter
/// * `sqn`: number of the SQ this WQE is posted to
/// * `lkey`: the lkey used by the SQ
/// * `local_address`: physical address of the packet buffer
/// * `packet`: packet buffer
pub fn send(&mut self, wqe_index: u32, sqn: u32, lkey: u32, local_address: PhysicalAddress, packet: &[u8]) {
self.control.send(wqe_index, sqn);
self.eth.init(packet);
self.data.init(lkey, local_address, packet.len() as u32);
}
/// Fill the control segment of the WQE to execute a NOP.
///
/// # Arguments
/// * `wqe_index`: WQEBB number of the first block of this WQE
/// * `sqn`: number of the SQ this WQE is posted to
pub fn nop(&mut self, wqe_index: u32, sqn: u32) {
self.control.nop(wqe_index, sqn);
}
/// Prints out the fields of a WQE in the format used by other drivers (e.g. Linux, Snabb)
pub fn dump(&self, i: usize) {
debug!("Tx WQE {}", i);
unsafe {
let ptr = self as *const WorkQueueEntrySend as *const u32;
debug!("{:#010x} {:#010x} {:#010x} {:#010x}", (*ptr).to_be(), (*ptr.offset(1)).to_be(), (*ptr.offset(2)).to_be(), (*ptr.offset(3)).to_be());
debug!("{:#010x} {:#010x} {:#010x} {:#010x}", (*ptr.offset(4)).to_be(), (*ptr.offset(5)).to_be(), (*ptr.offset(6)).to_be(), (*ptr.offset(7)).to_be());
debug!("{:#010x} {:#010x} {:#010x} {:#010x}", (*ptr.offset(8)).to_be(), (*ptr.offset(9)).to_be(), (*ptr.offset(10)).to_be(), (*ptr.offset(11)).to_be());
debug!("{:#010x} {:#010x} {:#010x} {:#010x} \n", (*ptr.offset(12)).to_be(), (*ptr.offset(13)).to_be(), (*ptr.offset(14)).to_be(), (*ptr.offset(15)).to_be());
}
}
}
/// WQEs are built from multiple segments.
/// In the case of Receive WQEs, there is only the memory pointer data segment
#[derive(FromBytes, Default)]
#[repr(C)]
pub struct WorkQueueEntryReceive {
/// This segment contains the length and address of the packet buffer
data: MemoryPointerDataSegment
}
const _: () = assert!(core::mem::size_of::<WorkQueueEntryReceive>() == 16);
impl WorkQueueEntryReceive {
/// set a WQE to an initial state
pub fn init(&mut self) {
*self = WorkQueueEntryReceive::default();
}
/// Fill the data segment of the WQE to receive packets.
///
/// # Arguments
/// * `lkey`: the lkey used by the RQ
/// * `local_address`: physical address of the packet buffer
/// * `packet_len`: packet buffer length in bytes
pub fn update_buffer_info(&mut self, lkey: u32, local_address: PhysicalAddress, packet_len: u32) {
self.data.init(lkey, local_address, packet_len);
}
/// Prints out the fields of a WQE in the format used by other drivers (e.g. Linux, Snabb)
pub fn dump(&self, i: usize) {
debug!("Rx WQE {}", i);
unsafe {
let ptr = self as *const WorkQueueEntryReceive as *const u32;
debug!("{:#010x} {:#010x} {:#010x} {:#010x}", (*ptr).to_be(), (*ptr.offset(1)).to_be(), (*ptr.offset(2)).to_be(), (*ptr.offset(3)).to_be());
}
}
}
/// Possible values of the CE subfield in the [`ControlSegment`]
#[derive(Debug, TryFromPrimitive)]
#[repr(u8)]
enum CompletionAndEventMode {
/// Generate CQE only on WQE completion with error
CQEOnWQEError = 0,
/// Generate CQE only on first WQE completion with error
CQEOnFirstWQEError = 1,
/// Generate CQE on WQE completion
CQEAlways = 2,
/// Generate CQE and EQE
CQEAndEQE = 3
}
/// This segment contains control information of the WQE.
#[derive(FromBytes, Default)]
#[repr(C)]
pub(crate) struct ControlSegment {
/// A multi-part field:
/// * `opc_mod`: opcode modifier, occupies bits [31:24]
/// * `wqe_index`: WQEBB number of the first block of this WQE, occupies bits [23:8]
/// * `opcode`: a value of the type [`WQEOpcode`], occupies bits [7:0]
pub(crate) opcode: Volatile<U32<BigEndian>>,
/// A multi-part field:
/// * `qp_or_sq`: QP/SQ number this WQE is posted to, occupies bits [31:8]
/// * `ds`: WQE size in octowords (16-byte units), occupies bits [5:0]
pub(crate) ds: Volatile<U32<BigEndian>>,
/// A multi-part field:
/// * `ce`: A value of the type [`CompletionAndEventMode`], occupies bits [3:2]
/// * `se`: true if a solicited event, occupies bit 1
ce_se: Volatile<U32<BigEndian>>,
/// general identifier according to WQE opcode/opc_mod
ctrl_general_id: Volatile<U32<BigEndian>>,
}
const _: () = assert!(core::mem::size_of::<ControlSegment>() == 16);
impl ControlSegment {
/// Initialize the fields of the control segment.
///
/// # Arguments
/// * `opcode`: the type of command this WQE will complete
/// * `wqe_index`: WQEBB number of the first block of this WQE
/// * `sqn`: number of the SQ this WQE is posted to
fn init(&mut self, opcode: WQEOpcode, wqe_index: u32, sqn: u32) {
const WQE_INDEX_SHIFT: u32 = 8;
const SQN_SHIFT: u32 = 8;
// WQE size in octowords (16-byte units)
const WQE_SIZE_IN_OCTWORDS: u32 = core::mem::size_of::<WorkQueueEntrySend>() as u32 / 16;
const CE_SHIFT: u32 = 2;
self.opcode.write(U32::new((wqe_index << WQE_INDEX_SHIFT)| (opcode as u32)));
self.ds.write(U32::new((sqn << SQN_SHIFT) | WQE_SIZE_IN_OCTWORDS));
self.ce_se.write(U32::new((CompletionAndEventMode::CQEAlways as u32) << CE_SHIFT));
}
/// Initialize the fields of the control segment to send a packet.
///
/// # Arguments
/// * `wqe_index`: WQEBB number of the first block of this WQE
/// * `sqn`: number of the SQ this WQE is posted to
pub fn send(&mut self, wqe_index: u32, sqn: u32) {
self.init(WQEOpcode::Send, wqe_index, sqn)
}
/// Initialize the fields of the control segment to create a NOP.
/// With a NOP, only a completion event will be generated.
/// It's a good way to make sure the CQ and WQ are properly initialized.
///
/// # Arguments
/// * `wqe_index`: WQEBB number of the first block of this WQE
/// * `sqn`: number of the SQ this WQE is posted to
pub fn nop(&mut self, wqe_index: u32, sqn: u32) {
self.init(WQEOpcode::Nop, wqe_index, sqn)
}
}
/// This segment contains stateless offloading control and inlined Ethernet packet headers
#[derive(FromBytes, Default)]
#[repr(C)]
pub(crate) struct EthSegment {
_padding0: u32,
/// Maximum Segment Size
mss: Volatile<U32<BigEndian>>,
flow_table_metadata: Volatile<U32<BigEndian>>,
/// A multi-part field:
/// * `inline_header_size`: length of inlined packet headers in bytes, occupies bits [25:16]
/// * `inline_headers`: beginning of the inlined packet headers, occupies bits [15:0]
inline_headers_0: Volatile<U32<BigEndian>>,
/// bytes 2 to 5 of the packet header
inline_headers_1: Volatile<U32<BigEndian>>,
/// bytes 6 to 9 of the packet header
inline_headers_2: Volatile<U32<BigEndian>>,
/// bytes 10 to 13 of the packet header
inline_headers_3: Volatile<U32<BigEndian>>,
/// bytes 14 and 15 of the packet header
inline_headers_4: Volatile<U32<BigEndian>>,
}
const _: () = assert!(core::mem::size_of::<EthSegment>() == 32);
impl EthSegment {
/// Initialize the fields of the eth segment to send a packet.
///
/// # Arguments
/// * `packet`: packet buffer
pub fn init(&mut self, packet: &[u8]) {
const INLINE_HEADER_SIZE: u32 = 16;
const INLINE_HEADER_SHIFT: u32 = 16;
self.inline_headers_0.write(U32::new((INLINE_HEADER_SIZE << INLINE_HEADER_SHIFT) | (packet[0] as u32) << 8 | (packet[1] as u32)));
self.inline_headers_1.write(U32::new((packet[2] as u32) << 24 | (packet[3] as u32) << 16 | (packet[4] as u32) << 8 | packet[5] as u32));
self.inline_headers_2.write(U32::new((packet[6] as u32) << 24 | (packet[7] as u32) << 16 | (packet[8] as u32) << 8 | packet[9] as u32));
self.inline_headers_3.write(U32::new((packet[10] as u32) << 24 | (packet[11] as u32) << 16 | (packet[12] as u32) << 8 | packet[13] as u32));
self.inline_headers_4.write(U32::new((packet[14] as u32) << 24 | (packet[15] as u32) << 16));
}
}
/// This segment contains the length and address of the packet buffer
#[derive(FromBytes, Default)]
#[repr(C)]
pub(crate) struct MemoryPointerDataSegment {
/// length of the packet in bytes
byte_count: Volatile<U32<BigEndian>>,
/// the lkey used by the WQ
l_key: Volatile<U32<BigEndian>>,
/// upper 4 bytes of the physical address of the packet buffer
local_address_h: Volatile<U32<BigEndian>>,
/// lower 4 bytes of the physical address of the packet buffer
local_address_l: Volatile<U32<BigEndian>>,
}
const _: () = assert!(core::mem::size_of::<MemoryPointerDataSegment>() == 16);
impl MemoryPointerDataSegment {
/// Initialize the fields of the data segment to send or receive a packet.
///
/// # Arguments
/// * `lkey`: the lkey used by the WQ
/// * `local_address`: physical address of the packet buffer
/// * `len`: length of the packet in bytes
pub fn init(&mut self, lkey: u32, local_address: PhysicalAddress, len: u32) {
self.byte_count.write(U32::new(len));
self.l_key.write(U32::new(lkey));
self.local_address_h.write(U32::new((local_address.value() >> 32) as u32));
self.local_address_l.write(U32::new((local_address.value() & 0xFFFF_FFFF) as u32));
}
}