1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
// Copyright 2016 Philipp Oppermann. See the README.md
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::{
borrow::{Borrow, BorrowMut},
cmp::Ordering,
hash::{Hash, Hasher},
marker::PhantomData,
mem,
ops::{Deref, DerefMut},
ptr::{NonNull, Unique},
slice,
};
use log::{error, warn, debug, trace};
use memory_structs::{PageSize, Page4K};
use crate::{BROADCAST_TLB_SHOOTDOWN_FUNC, VirtualAddress, PhysicalAddress, Page, Frame, FrameRange, AllocatedPages, AllocatedFrames, UnmappedFrames};
use crate::paging::{
get_current_p4,
table::{P4, UPCOMING_P4, Table, Level4},
};
use pte_flags::PteFlagsArch;
use spin::Once;
use kernel_config::memory::PAGE_SIZE;
use super::tlb_flush_virt_addr;
use zerocopy::FromBytes;
use page_table_entry::UnmapResult;
use owned_borrowed_trait::{OwnedOrBorrowed, Owned, Borrowed};
#[cfg(target_arch = "x86_64")]
use kernel_config::memory::ENTRIES_PER_PAGE_TABLE;
/// This is a private callback used to convert `UnmappedFrameRange` into `UnmappedFrames`.
///
/// This exists to break the cyclic dependency cycle between `page_table_entry` and
/// `frame_allocator`, which depend on each other as such:
/// * `frame_allocator` needs to `impl Into<Frames> for UnmappedFrameRange`
/// in order to allow unmapped exclusive frames to be safely deallocated
/// * `page_table_entry` needs to use the `AllocatedFrames` type in order to allow
/// page table entry values to be set safely to a real physical frame that is owned and exists.
///
/// To get around that, the `frame_allocator::init()` function returns a callback
/// to its function that allows converting a range of unmapped frames back into `UnmappedFrames`,
/// which then allows them to be dropped and thus deallocated.
///
/// This is safe because the frame allocator can only be initialized once, and also because
/// only this crate has access to that function callback and can thus guarantee
/// that it is only invoked for `UnmappedFrameRange`.
pub(super) static INTO_UNMAPPED_FRAMES_FUNC:
Once< fn(FrameRange<Page4K>) -> UnmappedFrames<Page4K> > = Once::new();
/// A convenience function to translate the given virtual address into a
/// physical address using the currently-active page table.
pub fn translate(virtual_address: VirtualAddress) -> Option<PhysicalAddress> {
Mapper::from_current().translate(virtual_address)
}
pub struct Mapper {
p4: Unique<Table<Level4>>,
/// The Frame contaning the top-level P4 page table.
pub(crate) target_p4: Frame<Page4K>,
}
impl Mapper {
/// Creates (bootstraps) a `Mapper` based on the
/// currently-active P4 page table root.
pub(crate) fn from_current() -> Mapper {
Self::with_p4_frame(get_current_p4())
}
/// Creates a new `Mapper` that uses the recursive entry in the current P4 page table
/// to map the given `p4` frame.
///
/// The given `p4` frame is the root frame of that upcoming page table.
pub(crate) fn with_p4_frame(p4: Frame<Page4K>) -> Mapper {
Mapper {
p4: Unique::new(P4).unwrap(), // cannot panic; the P4 value is valid
target_p4: p4,
}
}
/// Creates a new mapper for an upcoming (soon-to-be-initialized) page table
/// that uses the `UPCOMING_P4` recursive entry in the current P4 table
/// to map that new page table.
///
/// The given `p4` frame is the root frame of that upcoming page table.
pub(crate) fn upcoming(p4: Frame<Page4K>) -> Mapper {
Mapper {
p4: Unique::new(UPCOMING_P4).unwrap(),
target_p4: p4,
}
}
/// Returns a reference to this `Mapper`'s root page table as a P4-level table.
pub(crate) fn p4(&self) -> &Table<Level4> {
unsafe { self.p4.as_ref() }
}
/// Returns a mutable reference to this `Mapper`'s root page table as a P4-level table.
pub(crate) fn p4_mut(&mut self) -> &mut Table<Level4> {
unsafe { self.p4.as_mut() }
}
/// Dumps all page table entries at all four page table levels for the given `VirtualAddress`,
/// and also shows their `PteFlags`.
///
/// The page table details are written to the log as an `info` message.
pub fn dump_pte(&self, virtual_address: VirtualAddress) {
let page = Page::containing_address(virtual_address);
let p4 = self.p4();
let p3 = p4.next_table(page.p4_index());
let p2 = p3.and_then(|p3| p3.next_table(page.p3_index()));
let p1 = p2.and_then(|p2| p2.next_table(page.p2_index()));
log::info!(
"VirtualAddress: {:#X}:
P4 entry: {:#X} ({:?})
P3 entry: {:#X} ({:?})
P2 entry: {:#X} ({:?})
P1 entry: (PTE) {:#X} ({:?})",
virtual_address,
&p4[page.p4_index()].value(),
&p4[page.p4_index()].flags(),
p3.map(|p3| &p3[page.p3_index()]).map(|p3_entry| p3_entry.value()).unwrap_or(0x0),
p3.map(|p3| &p3[page.p3_index()]).map(|p3_entry| p3_entry.flags()),
p2.map(|p2| &p2[page.p2_index()]).map(|p2_entry| p2_entry.value()).unwrap_or(0x0),
p2.map(|p2| &p2[page.p2_index()]).map(|p2_entry| p2_entry.flags()),
p1.map(|p1| &p1[page.p1_index()]).map(|p1_entry| p1_entry.value()).unwrap_or(0x0),
p1.map(|p1| &p1[page.p1_index()]).map(|p1_entry| p1_entry.flags()),
);
}
/// Translates a `VirtualAddress` to a `PhysicalAddress` by walking the page tables.
pub fn translate(&self, virtual_address: VirtualAddress) -> Option<PhysicalAddress> {
// get the frame number of the page containing the given virtual address,
// and then the corresponding physical address is that page frame number * page size + offset
self.translate_page(Page::containing_address(virtual_address))
.map(|frame| frame.start_address() + virtual_address.page_offset())
}
/// Translates a virtual memory `Page` to a physical memory `Frame` by walking the page tables.
///
/// Note that this only supports translating a 4K page into a 4K frame,
/// but it still correctly handles the cases where huge pages are used in the page tables.
pub fn translate_page(&self, page: Page) -> Option<Frame> {
let p3 = self.p4().next_table(page.p4_index());
#[cfg(target_arch = "x86_64")]
let huge_page = || {
p3.and_then(|p3| {
let p3_entry = &p3[page.p3_index()];
// 1GiB page?
if let Some(start_frame) = p3_entry.pointed_frame() {
if p3_entry.flags().is_huge() {
// address must be 1GiB aligned
assert!(start_frame.number() % (ENTRIES_PER_PAGE_TABLE * ENTRIES_PER_PAGE_TABLE) == 0);
return Some(Frame::containing_address(PhysicalAddress::new_canonical(
PAGE_SIZE * (start_frame.number() + page.p2_index() * ENTRIES_PER_PAGE_TABLE + page.p1_index())
)));
}
}
if let Some(p2) = p3.next_table(page.p3_index()) {
let p2_entry = &p2[page.p2_index()];
// 2MiB page?
if let Some(start_frame) = p2_entry.pointed_frame() {
if p2_entry.flags().is_huge() {
// address must be 2MiB aligned
assert!(start_frame.number() % ENTRIES_PER_PAGE_TABLE == 0);
return Some(Frame::containing_address(PhysicalAddress::new_canonical(
PAGE_SIZE * (start_frame.number() + page.p1_index())
)));
}
}
}
None
})
};
#[cfg(target_arch = "aarch64")]
let huge_page = || { todo!("huge page (block descriptor) translation for aarch64") };
p3.and_then(|p3| p3.next_table(page.p3_index()))
.and_then(|p2| p2.next_table(page.p2_index()))
.and_then(|p1| p1[page.p1_index()].pointed_frame())
.or_else(huge_page)
}
/*
* An unfinished implementation of a generically-sized translate routine that handles huge pages.
*
/// Translates a virtual memory `Page` to a physical memory `Frame` by walking the page tables.
pub fn translate_page<P: PageSize>(&self, page: Page<P>) -> Option<Frame<P>> {
let p3 = self.p4().next_table(page.p4_index());
#[cfg(target_arch = "x86_64")]
let huge_page = || {
p3.and_then(|p3| {
let p3_entry = &p3[page.p3_index()];
// 1GiB page?
if let Some(start_frame) = p3_entry.pointed_frame() {
if p3_entry.flags().is_huge() {
// address must be 1GiB aligned
assert!(start_frame.number() % (ENTRIES_PER_PAGE_TABLE * ENTRIES_PER_PAGE_TABLE) == 0);
return Some(
Frame::containing_address_1gb(PhysicalAddress::new_canonical(
PAGE_SIZE * (start_frame.number() + page.p2_index() * ENTRIES_PER_PAGE_TABLE + page.p1_index())
))
.from_1g_into_generic()
);
}
}
if let Some(p2) = p3.next_table(page.p3_index()) {
let p2_entry = &p2[page.p2_index()];
// 2MiB page?
if let Some(start_frame) = p2_entry.pointed_frame() {
if p2_entry.flags().is_huge() {
// address must be 2MiB aligned
assert!(start_frame.number() % ENTRIES_PER_PAGE_TABLE == 0);
return Some(
Frame::containing_address_2mb(PhysicalAddress::new_canonical(
PAGE_SIZE * (start_frame.number() + page.p1_index())
))
.from_2m_into_generic()
);
}
}
}
None
})
};
#[cfg(target_arch = "aarch64")]
let huge_page = || { todo!("huge page (block descriptor) translation for aarch64") };
p3.and_then(|p3| p3.next_table(page.p3_index()))
.and_then(|p2| p2.next_table(page.p2_index()))
.and_then(|p1| p1[page.p1_index()].pointed_frame())
.map(Frame::from_4k_into_generic)
.or_else(huge_page)
}
*/
/// An internal function that performs the actual mapping of a range of allocated `pages`
/// to a range of allocated `frames`.
///
/// Returns a tuple of the new `MappedPages` object containing the allocated `pages`
/// and the allocated `frames` object.
pub(super) fn internal_map_to<P, BF, FL>(
&mut self,
pages: AllocatedPages/* <P> */,
frames: BF,
flags: FL,
) -> Result<(MappedPages, BF::Inner), &'static str>
where
P: PageSize,
BF: OwnedOrBorrowed<AllocatedFrames<P>>,
FL: Into<PteFlagsArch>,
{
let frames = frames.into_inner();
let flags = flags.into();
let higher_level_flags = flags.adjust_for_higher_level_pte();
// Only the lowest-level P1 entry can be considered exclusive, and only when
// we are mapping it exclusively (i.e., owned `AllocatedFrames` are passed in).
let actual_flags = flags
.valid(true)
.exclusive(BF::OWNED);
let pages_count = pages.size_in_pages();
let frames_count = frames.borrow().size_in_frames();
if pages_count != frames_count {
error!("map_allocated_pages_to(): pages {:?} count {} must equal frames {:?} count {}!",
pages, pages_count, frames.borrow(), frames_count
);
return Err("map_allocated_pages_to(): page count must equal frame count");
}
// TODO FIXME: implement huge pages here.
// iterate over pages and frames in lockstep
for (page, frame) in pages.range().clone().into_iter().zip(frames.borrow().into_iter()) {
let p3 = self.p4_mut().next_table_create(page.p4_index(), higher_level_flags);
let p2 = p3.next_table_create(page.p3_index(), higher_level_flags);
let p1 = p2.next_table_create(page.p2_index(), higher_level_flags);
if !p1[page.p1_index()].is_unused() {
error!("map_allocated_pages_to(): page {:#X} -> frame {:#X}, page was already in use!", page.start_address(), frame.start_address());
return Err("map_allocated_pages_to(): page was already in use");
}
p1[page.p1_index()].set_entry(frame, actual_flags);
}
Ok((
MappedPages {
page_table_p4: self.target_p4,
pages,
flags: actual_flags,
},
frames,
))
}
/// Maps the given virtual `AllocatedPages` to the given physical `AllocatedFrames`.
///
/// Consumes the given `AllocatedPages` and returns a `MappedPages` object which contains those `AllocatedPages`.
pub fn map_allocated_pages_to<P, FL>(
&mut self,
pages: AllocatedPages /* <P> */,
frames: AllocatedFrames<P>,
flags: FL,
) -> Result<MappedPages, &'static str>
where
P: PageSize,
FL: Into<PteFlagsArch>,
{
let (mapped_pages, frames) = self.internal_map_to(pages, Owned(frames), flags)?;
// Currently we forget the actual `AllocatedFrames` object because
// there is no easy/efficient way to store a dynamic list of non-contiguous frames (would require Vec).
// This is okay because we will deallocate each of these frames when this MappedPages object is dropped
// and each of the page table entries for its pages are cleared.
core::mem::forget(frames);
Ok(mapped_pages)
}
/// Maps the given 4K-sized `AllocatedPages` to randomly chosen (allocated) physical frames.
///
/// Consumes the given `AllocatedPages` and returns a `MappedPages` object which contains those `AllocatedPages`.
///
/// ## Note on huge pages
/// This function only supports 4K-sized pages, not huge pages.
/// To use huge pages, you must provide the huge frames and call [`Self::map_allocated_pages_to()`].
pub fn map_allocated_pages<FL: Into<PteFlagsArch>>(
&mut self,
pages: AllocatedPages,
flags: FL,
) -> Result<MappedPages, &'static str> {
let flags = flags.into();
let higher_level_flags = flags.adjust_for_higher_level_pte();
// Only the lowest-level P1 entry can be considered exclusive, and only because
// we are mapping it exclusively (to owned `AllocatedFrames`).
let actual_flags = flags
.valid(true)
.exclusive(true);
for page in pages.range().clone() {
let af = frame_allocator::allocate_frames(1).ok_or("map_allocated_pages(): couldn't allocate new frame, out of memory")?;
let p3 = self.p4_mut().next_table_create(page.p4_index(), higher_level_flags);
let p2 = p3.next_table_create(page.p3_index(), higher_level_flags);
let p1 = p2.next_table_create(page.p2_index(), higher_level_flags);
if !p1[page.p1_index()].is_unused() {
error!("map_allocated_pages(): page {:#X} -> frame {:#X}, page was already in use!",
page.start_address(), af.start_address()
);
return Err("map_allocated_pages(): page was already in use");
}
p1[page.p1_index()].set_entry(af.as_allocated_frame(), actual_flags);
core::mem::forget(af); // we currently forget frames allocated here since we don't yet have a way to track them.
}
Ok(MappedPages {
page_table_p4: self.target_p4,
pages,
flags: actual_flags,
})
}
}
// This implementation block contains a hacky function for non-bijective mappings
// that shouldn't be exposed to most other OS components, especially applications.
impl Mapper {
/// An unsafe escape hatch that allows one to map the given virtual `AllocatedPages`
/// to the given range of physical `frames`.
///
/// This is unsafe because it accepts a reference to an `AllocatedFrames` object.
/// This violates Theseus's bijective mapping guarantee,
/// in which only one virtual page can map to a given physical frame,
/// which preserves Rust's knowledge of language-level aliasing and thus its safety checks.
///
/// As such, the pages mapped here will be marked as non-exclusive,
/// regardless of the `flags` passed in.
/// This means that the `frames` they map will NOT be deallocated upon unmapping.
///
/// Consumes the given `AllocatedPages` and returns a `MappedPages` object
/// which contains those `AllocatedPages`.
#[doc(hidden)]
pub unsafe fn map_to_non_exclusive<FL: Into<PteFlagsArch>>(
mapper: &mut Self,
pages: AllocatedPages,
frames: &AllocatedFrames<Page4K>,
flags: FL,
) -> Result<MappedPages, &'static str> {
// In this function, none of the frames can be mapped as exclusive
// because we're accepting a *reference* to an `AllocatedFrames`, not consuming it.
mapper.internal_map_to(pages, Borrowed(frames), flags)
.map(|(mp, _af)| mp)
}
}
/// A macro for applying the same field/method accessors to all variants
/// in an enum based on the three possible [`PageSize`]s.
#[macro_export]
macro_rules! chunk_sized_expr {
($t:ty, $chunk:ident, .$($method:tt)*) => {
match $chunk {
<$t>::Normal4K(c) => c.$($method)*,
<$t>::Huge2M(c) => c.$($method)*,
<$t>::Huge1G(c) => c.$($method)*,
}
};
}
/// A version of [`AllocatedPages`] that encodes its [`PageSize`] with internal enum variants.
#[derive(Debug)]
#[allow(dead_code)]
pub enum AllocatedPagesSized {
// TODO: support huge pages via the `P: PageSize` parameter.
/// A range of normal 4K-sized allocated pages.
Normal4K(AllocatedPages /* <Page4K> */),
/// A range of huge 2M-sized allocated pages.
Huge2M(AllocatedPages /* <Page2M> */),
/// A range of huge 1G-sized allocated pages.
Huge1G(AllocatedPages /* <Page1G> */),
}
impl Default for AllocatedPagesSized {
fn default() -> Self {
Self::empty()
}
}
impl From<AllocatedPages/* <Page4K >*/> for AllocatedPagesSized {
fn from(p: AllocatedPages/* <Page4K >*/) -> Self {
Self::Normal4K(p)
}
}
/*
* TODO: support huge pages via the `P: PageSize` parameter.
*
impl From<AllocatedPages<Page2M>> for AllocatedPagesSized {
fn from(p: AllocatedPages<Page2M>) -> Self {
Self::Huge2M(chunk)
}
}
impl From<AllocatedPages<Page1G>> for AllocatedPagesSized {
fn from(p: AllocatedPages<Page1G>) -> Self {
Self::Huge1G(chunk)
}
}
*/
#[allow(dead_code)]
impl AllocatedPagesSized {
/// Returns an empty `AllocatedPagesSized` object that performs no page allocation.
/// Can be used as a placeholder, but will not permit any real usage.
pub const fn empty() -> Self {
Self::Normal4K(AllocatedPages::empty())
}
/// Returns the 4K-sized number of the starting page of the enclosed `AllocatedPages`.
pub const fn number(&self) -> usize {
chunk_sized_expr!(Self, self, .start().number())
}
/// Returns the virtual address of the starting page of the enclosed `AllocatedPages`.
pub const fn start_address(&self) -> VirtualAddress {
chunk_sized_expr!(Self, self, .start_address())
}
/// Converts this into a 4K-sized `AllocatedPages`.
pub fn into_4k(self) -> AllocatedPages /* <Page4K> */ {
// To make this a const fn, we cannot use the implementations of `Into`.
match self {
Self::Normal4K(p) => p,
Self::Huge2M(p) => p, /* TODO: support huge page range conversions */
Self::Huge1G(p) => p, /* TODO: support huge page range conversions */
}
}
}
/// Represents a contiguous range of virtual memory pages that are currently mapped.
/// A `MappedPages` object can only have a single range of contiguous pages, not multiple disjoint ranges.
/// This does not guarantee that its pages are mapped to frames that are contiguous in physical memory.
///
/// This object also represents ownership of those pages; if this object falls out of scope,
/// it will be dropped, and the pages will be unmapped and then also de-allocated.
/// Thus, it ensures memory safety by guaranteeing that this object must be held
/// in order to access data stored in these mapped pages, much like a guard type.
#[derive(Debug)]
pub struct MappedPages {
/// The Frame containing the top-level P4 page table that this MappedPages was originally mapped into.
page_table_p4: Frame<Page4K>,
/// The range of allocated virtual pages contained by this mapping.
pages: AllocatedPages,
// The PTE flags that define the page permissions of this mapping.
flags: PteFlagsArch,
}
static_assertions::assert_not_impl_any!(MappedPages: DerefMut, Clone);
impl Deref for MappedPages {
type Target = AllocatedPages;
fn deref(&self) -> &AllocatedPages {
&self.pages
}
}
impl MappedPages {
/// Returns an empty MappedPages object that performs no allocation or mapping actions.
/// Can be used as a placeholder, but will not permit any real usage.
pub const fn empty() -> MappedPages {
MappedPages {
page_table_p4: Frame::containing_address(PhysicalAddress::zero()),
pages: AllocatedPages::empty(),
flags: PteFlagsArch::new(),
}
}
/// Returns the flags that describe this `MappedPages` page table permissions.
pub fn flags(&self) -> PteFlagsArch {
self.flags
}
/// Merges the given `MappedPages` object `mp` into this `MappedPages` object (`self`).
///
/// For example, if you have the following `MappedPages` objects:
/// * this mapping, with a page range including one page at 0x2000
/// * `mp`, with a page range including two pages at 0x3000 and 0x4000
/// Then this `MappedPages` object will be updated to cover three pages from `[0x2000:0x4000]` inclusive.
///
/// In addition, the `MappedPages` objects must have the same flags and page table root frame
/// (i.e., they must have all been mapped using the same set of page tables).
///
/// If an error occurs, such as the `mappings` not being contiguous or having different flags,
/// then a tuple including an error message and the original `mp` will be returned,
/// which prevents the `mp` from being dropped.
///
/// # Note
/// No remapping actions or page reallocations will occur on either a failure or a success.
pub fn merge(&mut self, mut mp: MappedPages) -> Result<(), (&'static str, MappedPages)> {
if mp.page_table_p4 != self.page_table_p4 {
error!("MappedPages::merge(): mappings weren't mapped using the same page table: {:?} vs. {:?}",
self.page_table_p4, mp.page_table_p4);
return Err(("failed to merge MappedPages that were mapped into different page tables", mp));
}
if mp.flags != self.flags {
error!("MappedPages::merge(): mappings had different flags: {:?} vs. {:?}",
self.flags, mp.flags);
return Err(("failed to merge MappedPages that were mapped with different flags", mp));
}
// Attempt to merge the page ranges together, which will fail if they're not contiguous.
// First, take ownership of the AllocatedPages inside of the `mp` argument.
let second_alloc_pages_owned = core::mem::replace(&mut mp.pages, AllocatedPages::empty());
if let Err(orig) = self.pages.merge(second_alloc_pages_owned) {
// Upon error, restore the `mp.pages` AllocatedPages that we took ownership of.
mp.pages = orig;
error!("MappedPages::merge(): mappings not virtually contiguous: first ends at {:?}, second starts at {:?}",
self.pages.end(), mp.pages.start()
);
return Err(("failed to merge MappedPages that weren't virtually contiguous", mp));
}
// Ensure the existing mapping doesn't run its drop handler and unmap its pages.
mem::forget(mp);
Ok(())
}
/// Splits this `MappedPages` into two separate `MappedPages` objects:
/// * `[beginning : at_page - 1]`
/// * `[at_page : end]`
///
/// This function follows the behavior of [`core::slice::split_at()`],
/// thus, either one of the returned `MappedPages` objects may be empty.
/// * If `at_page == self.pages.start`, the first returned `MappedPages` object will be empty.
/// * If `at_page == self.pages.end + 1`, the second returned `MappedPages` object will be empty.
///
/// Returns an `Err` containing this `MappedPages` (`self`) if `at_page` is not within its bounds.
///
/// # Note
/// No remapping actions or page reallocations will occur on either a failure or a success.
///
/// [`core::slice::split_at()`]: https://doc.rust-lang.org/core/primitive.slice.html#method.split_at
pub fn split(mut self, at_page: Page) -> Result<(MappedPages, MappedPages), MappedPages> {
// Take ownership of the `AllocatedPages` inside of the `MappedPages` so we can split it.
let alloc_pages_owned = core::mem::replace(&mut self.pages, AllocatedPages::empty());
match alloc_pages_owned.split(at_page) {
Ok((first_ap, second_ap)) => Ok((
MappedPages {
page_table_p4: self.page_table_p4,
pages: first_ap,
flags: self.flags,
},
MappedPages {
page_table_p4: self.page_table_p4,
pages: second_ap,
flags: self.flags,
}
// When returning here, `self` will be dropped, but it's empty so it has no effect.
)),
Err(orig_ap) => {
// Upon error, restore the `self.pages` (`AllocatedPages`) that we took ownership of.
self.pages = orig_ap;
Err(self)
}
}
}
/// Creates a deep copy of this `MappedPages` memory region,
/// by duplicating not only the virtual memory mapping
/// but also the underlying physical memory frames.
///
/// The caller can optionally specify new flags for the duplicated mapping,
/// otherwise, the same flags as the existing `MappedPages` will be used.
/// This is useful for when you want to modify contents in the new pages,
/// since it avoids extra `remap()` operations.
///
/// Returns a new `MappedPages` object with the same in-memory contents
/// as this object, but at a completely new memory region.
pub fn deep_copy<F: Into<PteFlagsArch>>(
&self,
active_table_mapper: &mut Mapper,
new_flags: Option<F>,
) -> Result<MappedPages, &'static str> {
warn!("MappedPages::deep_copy() has not been adequately tested yet.");
let size_in_pages = self.size_in_pages();
use crate::paging::allocate_pages;
let new_pages = allocate_pages(size_in_pages).ok_or("Couldn't allocate_pages()")?;
// we must temporarily map the new pages as Writable, since we're about to copy data into them
let new_flags = new_flags.map_or(self.flags, Into::into);
let needs_remapping = !new_flags.is_writable();
let mut new_mapped_pages = active_table_mapper.map_allocated_pages(
new_pages,
new_flags.writable(true), // force writable
)?;
// perform the actual copy of in-memory content
// TODO: there is probably a better way to do this, e.g., `rep stosq/movsq` or something
{
type PageContent = [u8; PAGE_SIZE];
let source: &[PageContent] = self.as_slice(0, size_in_pages)?;
let dest: &mut [PageContent] = new_mapped_pages.as_slice_mut(0, size_in_pages)?;
dest.copy_from_slice(source);
}
if needs_remapping {
new_mapped_pages.remap(active_table_mapper, new_flags)?;
}
Ok(new_mapped_pages)
}
/// Change the mapping flags of this `MappedPages`'s page table entries.
///
/// Note that attempting to change certain "reserved" flags will have no effect.
/// For example, the `EXCLUSIVE` flag cannot be changed beause arbitrarily setting it
/// would violate safety.
pub fn remap<F: Into<PteFlagsArch>>(
&mut self,
active_table_mapper: &mut Mapper,
new_flags: F,
) -> Result<(), &'static str> {
if self.size_in_pages() == 0 { return Ok(()); }
// Use the existing value of the `EXCLUSIVE` flag, ignoring whatever value was passed in.
// Also ensure these flags are PRESENT (valid), since they are currently being mapped.
let new_flags = new_flags.into()
.exclusive(self.flags.is_exclusive())
.valid(true);
if new_flags == self.flags {
trace!("remap(): new_flags were the same as existing flags, doing nothing.");
return Ok(());
}
for page in self.pages.range().clone() {
let p1 = active_table_mapper.p4_mut()
.next_table_mut(page.p4_index())
.and_then(|p3| p3.next_table_mut(page.p3_index()))
.and_then(|p2| p2.next_table_mut(page.p2_index()))
.ok_or("mapping code does not support huge pages")?;
p1[page.p1_index()].set_flags(new_flags);
tlb_flush_virt_addr(page.start_address());
}
if let Some(func) = BROADCAST_TLB_SHOOTDOWN_FUNC.get() {
func(self.pages.range().clone());
}
self.flags = new_flags;
Ok(())
}
/// Consumes and unmaps this `MappedPages` object without auto-deallocating its `AllocatedPages` and `AllocatedFrames`,
/// allowing the caller to continue using them directly, e.g., reusing them for a future mapping.
/// This removes the need to attempt to to reallocate those same pages or frames on a separate code path.
///
/// Note that only the first contiguous range of `AllocatedFrames` will be returned, if any were unmapped.
/// All other non-contiguous ranges will be auto-dropped and deallocated.
/// This is due to how frame deallocation works.
pub fn unmap_into_parts(mut self, active_table_mapper: &mut Mapper) -> Result<(AllocatedPages, Option<AllocatedFrames>), Self> {
match self.unmap(active_table_mapper) {
Ok(first_frames) => {
let pages = mem::replace(&mut self.pages, AllocatedPages::empty());
Ok((pages, first_frames))
}
Err(e) => {
error!("MappedPages::unmap_into_parts(): failed to unmap {:?}, error: {}", self, e);
Err(self)
}
}
}
/// Remove the virtual memory mapping represented by this `MappedPages`.
///
/// This must NOT be public because it does not take ownership of this `MappedPages` object (`self`).
/// This is to allow it to be invoked from the `MappedPages` drop handler.
///
/// Returns the **first, contiguous** range of frames that was mapped to these pages.
/// If there are multiple discontiguous ranges of frames that were unmapped,
/// or the frames were not mapped bijectively (i.e., multiple pages mapped to these frames),
/// then only the first contiguous range of frames will be returned.
///
/// TODO: a few optional improvements could be made here:
/// (1) Accept an `Option<&mut Vec<AllocatedFrames>>` argument that allows the caller to
/// recover **all** `AllocatedFrames` unmapped during this function, not just the first contiguous frame range.
/// (2) Redesign this to take/consume `self` by ownership, and expose it as the only unmap function,
/// avoiding the need for a separate `unmap_into_parts()` function.
/// We could then use `mem::replace(&mut self, MappedPages::empty())` in the drop handler
/// to obtain ownership of `self`, which would allow us to transfer ownership of the dropped `MappedPages` here.
///
fn unmap(&mut self, active_table_mapper: &mut Mapper) -> Result<Option<AllocatedFrames>, &'static str> {
if self.size_in_pages() == 0 { return Ok(None); }
if active_table_mapper.target_p4 != self.page_table_p4 {
error!("BUG: MappedPages::unmap(): {:?}\n current P4 {:?} must equal original P4 {:?}, \
cannot unmap MappedPages from a different page table than they were originally mapped to!",
self, get_current_p4(), self.page_table_p4
);
return Err(
"BUG: MappedPages::unmap(): current P4 must equal original P4, \
cannot unmap MappedPages from a different page table than they were originally mapped to!"
);
}
let mut first_frame_range: Option<UnmappedFrames> = None; // this is what we'll return
let mut current_frame_range: Option<UnmappedFrames> = None;
for page in self.pages.range().clone() {
let p1 = active_table_mapper.p4_mut()
.next_table_mut(page.p4_index())
.and_then(|p3| p3.next_table_mut(page.p3_index()))
.and_then(|p2| p2.next_table_mut(page.p2_index()))
.ok_or("mapping code does not support huge pages")?;
let pte = &mut p1[page.p1_index()];
if pte.is_unused() {
return Err("unmap(): page not mapped");
}
let unmapped_frames = pte.set_unmapped();
tlb_flush_virt_addr(page.start_address());
// Here, create (or extend) a contiguous ranges of frames here based on the `unmapped_frames`
// freed from the newly-unmapped P1 PTE entry above.
match unmapped_frames {
UnmapResult::Exclusive(newly_unmapped_frames) => {
let newly_unmapped_frames = INTO_UNMAPPED_FRAMES_FUNC.get()
.ok_or("BUG: Mapper::unmap(): the `INTO_UNMAPPED_FRAMES_FUNC` callback was not initialized")
.map(|into_func| into_func(newly_unmapped_frames.deref().clone()))?;
if let Some(mut curr_frames) = current_frame_range.take() {
match curr_frames.merge(newly_unmapped_frames) {
Ok(()) => {
// Here, the newly unmapped frames were contiguous with the current frame_range,
// and we successfully merged them into a single range of AllocatedFrames.
current_frame_range = Some(curr_frames);
}
Err(newly_unmapped_frames) => {
// Here, the newly unmapped frames were **NOT** contiguous with the current_frame_range,
// so we "finish" the current_frame_range (it's already been "taken") and start a new one
// based on the newly unmapped frames.
current_frame_range = Some(newly_unmapped_frames);
// If this is the first frame range we've unmapped, don't drop it -- save it as the return value.
if first_frame_range.is_none() {
first_frame_range = Some(curr_frames);
} else {
// If this is NOT the first frame range we've unmapped, then go ahead and drop it now,
// otherwise there will not be any other opportunity for it to be dropped.
//
// TODO: here in the future, we could add it to the optional input list (see this function's doc comments)
// of AllocatedFrames to return, i.e., `Option<&mut Vec<AllocatedFrames>>`.
trace!("MappedPages::unmap(): dropping additional non-contiguous frames {:?}", curr_frames);
// curr_frames is dropped here
}
}
}
} else {
// This was the first frames we unmapped, so start a new current_frame_range.
current_frame_range = Some(newly_unmapped_frames);
}
}
UnmapResult::NonExclusive(_frames) => {
// trace!("Note: FYI: page {:X?} -> frames {:X?} was just unmapped but not mapped as EXCLUSIVE.", page, _frames);
}
}
}
#[cfg(not(bm_map))]
{
if let Some(func) = BROADCAST_TLB_SHOOTDOWN_FUNC.get() {
func(self.pages.range().clone());
}
}
// Ensure that we return at least some frame range, even if we broke out of the above loop early.
Ok(first_frame_range.map(|f| f.into_allocated_frames())
.or(current_frame_range.map(|f| f.into_allocated_frames())))
}
/// Reinterprets this `MappedPages`'s underlying memory region as a struct of the given type `T`,
/// i.e., overlays a struct on top of this mapped memory region.
///
/// # Requirements
/// The type `T` must implement the `FromBytes` trait, which is similar to the requirements
/// of a "plain old data" type, in that it cannot contain Rust references (`&` or `&mut`).
/// This makes sense because there is no valid way to reinterpret a region of untyped memory
/// as a Rust reference.
/// In addition, if we did permit that, a Rust reference created from unchecked memory contents
/// could never be valid, safe, or sound, as it could allow random memory access
/// (just like with an arbitrary pointer dereference) that could break isolation.
///
/// To satisfy this condition, you can use `#[derive(FromBytes)]` on your struct type `T`,
/// which will only compile correctly if the struct can be validly constructed
/// from "untyped" memory, i.e., an array of bytes.
///
/// # Arguments
/// * `byte_offset`: the offset (in number of bytes) from the beginning of the memory region
/// at which the struct is located (where it should start).
/// * This offset must be properly aligned with respect to the alignment requirements
/// of type `T`, otherwise an error will be returned.
///
/// Returns a reference to the new struct (`&T`) that is formed from the underlying memory region,
/// with a lifetime dependent upon the lifetime of this `MappedPages` object.
/// This ensures safety by guaranteeing that the returned struct reference
/// cannot be used after this `MappedPages` object is dropped and unmapped.
pub fn as_type<T: FromBytes>(&self, byte_offset: usize) -> Result<&T, &'static str> {
let size = mem::size_of::<T>();
if false {
debug!("MappedPages::as_type(): requested type {} with size {} at byte_offset {}, MappedPages size {}!",
core::any::type_name::<T>(),
size, byte_offset, self.size_in_bytes()
);
}
if byte_offset % mem::align_of::<T>() != 0 {
error!("MappedPages::as_type(): requested type {} with size {}, but the byte_offset {} is unaligned with type alignment {}!",
core::any::type_name::<T>(),
size, byte_offset, mem::align_of::<T>()
);
}
let start_vaddr = self.start_address().value().checked_add(byte_offset)
.ok_or("MappedPages::as_type(): overflow: start_address + byte_offset")?;
// check that size of type T fits within the size of the mapping
let end_bound = byte_offset.checked_add(size)
.ok_or("MappedPages::as_type(): overflow: byte_offset + size_of::<T>())")?;
if end_bound > self.size_in_bytes() {
error!("MappedPages::as_type(): requested type {} with size {} at byte_offset {}, which is too large for MappedPages of size {}!",
core::any::type_name::<T>(),
size, byte_offset, self.size_in_bytes()
);
return Err("MappedPages::as_type(): requested type and byte_offset would not fit within the MappedPages bounds");
}
// SAFE: we guarantee the size and lifetime are within that of this MappedPages object
let t: &T = unsafe {
&*(start_vaddr as *const T)
};
Ok(t)
}
/// Same as [`MappedPages::as_type()`], but returns a *mutable* reference to the type `T`.
///
/// Thus, it also checks that the underlying mapping is writable.
pub fn as_type_mut<T: FromBytes>(&mut self, byte_offset: usize) -> Result<&mut T, &'static str> {
let size = mem::size_of::<T>();
if false {
debug!("MappedPages::as_type_mut(): requested type {} with size {} at byte_offset {}, MappedPages size {}!",
core::any::type_name::<T>(),
size, byte_offset, self.size_in_bytes()
);
}
if byte_offset % mem::align_of::<T>() != 0 {
error!("MappedPages::as_type_mut(): requested type {} with size {}, but the byte_offset {} is unaligned with type alignment {}!",
core::any::type_name::<T>(),
size, byte_offset, mem::align_of::<T>()
);
}
// check flags to make sure mutability is allowed (otherwise a page fault would occur on a write)
if !self.flags.is_writable() {
error!("MappedPages::as_type_mut(): requested type {} with size {} at byte_offset {}, but MappedPages weren't writable (flags: {:?})",
core::any::type_name::<T>(),
size, byte_offset, self.flags
);
return Err("MappedPages::as_type_mut(): MappedPages were not writable");
}
let start_vaddr = self.start_address().value().checked_add(byte_offset)
.ok_or("MappedPages::as_type_mut(): overflow: start_address + byte_offset")?;
// check that size of type T fits within the size of the mapping
let end_bound = byte_offset.checked_add(size)
.ok_or("MappedPages::as_type_mut(): overflow: byte_offset + size_of::<T>())")?;
if end_bound > self.size_in_bytes() {
error!("MappedPages::as_type_mut(): requested type {} with size {} at byte_offset {}, which is too large for MappedPages of size {}!",
core::any::type_name::<T>(),
size, byte_offset, self.size_in_bytes()
);
return Err("MappedPages::as_type_mut(): requested type and byte_offset would not fit within the MappedPages bounds");
}
// SAFE: we guarantee the size and lifetime are within that of this MappedPages object
let t: &mut T = unsafe {
&mut *(start_vaddr as *mut T)
};
Ok(t)
}
/// Reinterprets this `MappedPages`'s underlying memory region as `&[T]`, a `length`-element slice of type `T`.
///
/// It has similar requirements and behavior as [`MappedPages::as_type()`].
///
/// # Arguments
/// * `byte_offset`: the offset (in number of bytes) into the memory region
/// at which the slice should start.
/// * This offset must be properly aligned with respect to the alignment requirements
/// of type `T`, otherwise an error will be returned.
/// * `length`: the length of the slice, i.e., the number of elements of type `T` in the slice.
/// Thus, the slice's address bounds will span the range from
/// `byte_offset` (inclusive) to `byte_offset + (size_of::<T>() * length)` (exclusive).
///
/// Returns a reference to the new slice that is formed from the underlying memory region,
/// with a lifetime dependent upon the lifetime of this `MappedPages` object.
/// This ensures safety by guaranteeing that the returned slice
/// cannot be used after this `MappedPages` object is dropped and unmapped.
pub fn as_slice<T: FromBytes>(&self, byte_offset: usize, length: usize) -> Result<&[T], &'static str> {
let size_in_bytes = length.checked_mul(mem::size_of::<T>())
.ok_or("MappedPages::as_slice(): overflow: length * size_of::<T>()")?;
if false {
debug!("MappedPages::as_slice(): requested slice of type {} with length {} (total size {}) at byte_offset {}, MappedPages size {}!",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, self.size_in_bytes()
);
}
if size_in_bytes > isize::MAX as usize {
return Err("MappedPages::as_slice(): length * size_of::<T>() must be no larger than isize::MAX");
}
if byte_offset % mem::align_of::<T>() != 0 {
error!("MappedPages::as_slice(): requested slice of type {} with length {} (total size {}), but the byte_offset {} is unaligned with type alignment {}!",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, mem::align_of::<T>()
);
}
let start_vaddr = self.start_address().value().checked_add(byte_offset)
.ok_or("MappedPages::as_slice(): overflow: start_address + byte_offset")?;
// check that size of slice fits within the size of the mapping
let end_bound = byte_offset.checked_add(size_in_bytes)
.ok_or("MappedPages::as_slice_mut(): overflow: byte_offset + (length * size_of::<T>())")?;
if end_bound > self.size_in_bytes() {
error!("MappedPages::as_slice(): requested slice of type {} with length {} (total size {}) at byte_offset {}, which is too large for MappedPages of size {}!",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, self.size_in_bytes()
);
return Err("MappedPages::as_slice(): requested slice length and byte_offset would not fit within the MappedPages bounds");
}
// SAFETY:
// ✅ The pointer is properly aligned (checked above) and is non-null.
// ✅ The entire memory range of the slice is contained within this `MappedPages` (bounds checked above).
// ✅ The pointer points to `length` consecutive values of type T.
// ✅ The slice memory cannot be mutated by anyone else because we only return an immutable reference to it.
// ✅ The total size of the slice does not exceed isize::MAX (checked above).
// ✅ The lifetime of the returned slice reference is tied to the lifetime of this `MappedPages`.
let slc: &[T] = unsafe {
slice::from_raw_parts(start_vaddr as *const T, length)
};
Ok(slc)
}
/// Same as [`MappedPages::as_slice()`], but returns a *mutable* slice.
///
/// Thus, it checks that the underlying mapping is writable.
pub fn as_slice_mut<T: FromBytes>(&mut self, byte_offset: usize, length: usize) -> Result<&mut [T], &'static str> {
let size_in_bytes = length.checked_mul(mem::size_of::<T>())
.ok_or("MappedPages::as_slice_mut(): overflow: length * size_of::<T>()")?;
if false {
debug!("MappedPages::as_slice_mut(): requested slice of type {} with length {} (total size {}) at byte_offset {}, MappedPages size {}!",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, self.size_in_bytes()
);
}
if size_in_bytes > isize::MAX as usize {
return Err("MappedPages::as_slice_mut(): length * size_of::<T>() must be no larger than isize::MAX");
}
if byte_offset % mem::align_of::<T>() != 0 {
error!("MappedPages::as_slice_mut(): requested slice of type {} with length {} (total size {}), but the byte_offset {} is unaligned with type alignment {}!",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, mem::align_of::<T>()
);
}
// check flags to make sure mutability is allowed (otherwise a page fault would occur on a write)
if !self.flags.is_writable() {
error!("MappedPages::as_slice_mut(): requested mutable slice of type {} with length {} (total size {}) at byte_offset {}, but MappedPages weren't writable (flags: {:?})",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, self.flags
);
return Err("MappedPages::as_slice_mut(): MappedPages were not writable");
}
let start_vaddr = self.start_address().value().checked_add(byte_offset)
.ok_or("MappedPages::as_slice_mut(): overflow: start_address + byte_offset")?;
// check that size of slice fits within the size of the mapping
let end_bound = byte_offset.checked_add(size_in_bytes)
.ok_or("MappedPages::as_slice_mut(): overflow: byte_offset + (length * size_of::<T>())")?;
if end_bound > self.size_in_bytes() {
error!("MappedPages::as_slice_mut(): requested mutable slice of type {} with length {} (total size {}) at byte_offset {}, which is too large for MappedPages of size {}!",
core::any::type_name::<T>(),
length, size_in_bytes, byte_offset, self.size_in_bytes()
);
return Err("MappedPages::as_slice_mut(): requested slice length and byte_offset would not fit within the MappedPages bounds");
}
// SAFETY:
// ✅ same as for `MappedPages::as_slice()`, plus:
// ✅ The underlying memory is not accessible through any other pointer, as we require a `&mut self` above.
// ✅ The underlying memory can be mutated because it is mapped as writable (checked above).
let slc: &mut [T] = unsafe {
slice::from_raw_parts_mut(start_vaddr as *mut T, length)
};
Ok(slc)
}
/// A convenience function for [`BorrowedMappedPages::from()`].
pub fn into_borrowed<T: FromBytes>(
self,
byte_offset: usize,
) -> Result<BorrowedMappedPages<T, Immutable>, (MappedPages, &'static str)> {
BorrowedMappedPages::from(self, byte_offset)
}
/// A convenience function for [`BorrowedMappedPages::from_mut()`].
pub fn into_borrowed_mut<T: FromBytes>(
self,
byte_offset: usize,
) -> Result<BorrowedMappedPages<T, Mutable>, (MappedPages, &'static str)> {
BorrowedMappedPages::from_mut(self, byte_offset)
}
/// A convenience function for [`BorrowedSliceMappedPages::from()`].
pub fn into_borrowed_slice<T: FromBytes>(
self,
byte_offset: usize,
length: usize,
) -> Result<BorrowedSliceMappedPages<T, Immutable>, (MappedPages, &'static str)> {
BorrowedSliceMappedPages::from(self, byte_offset, length)
}
/// A convenience function for [`BorrowedSliceMappedPages::from_mut()`].
pub fn into_borrowed_slice_mut<T: FromBytes>(
self,
byte_offset: usize,
length: usize,
) -> Result<BorrowedSliceMappedPages<T, Mutable>, (MappedPages, &'static str)> {
BorrowedSliceMappedPages::from_mut(self, byte_offset, length)
}
}
impl Drop for MappedPages {
fn drop(&mut self) {
// if self.size_in_pages() > 0 {
// trace!("MappedPages::drop(): unmapped MappedPages {:?}, flags: {:?}", &*self.pages, self.flags);
// }
let mut mapper = Mapper::from_current();
if let Err(e) = self.unmap(&mut mapper) {
error!("MappedPages::drop(): failed to unmap, error: {:?}", e);
}
// Note that the AllocatedPages will automatically be dropped here too,
// we do not need to call anything to make that happen.
}
}
/// A borrowed [`MappedPages`] object that derefs to `&T` and optionally also `&mut T`.
///
/// ## Type parameters
/// 1. `T: FromBytes`: the same parameter used in [`MappedPages::as_type()`] functions.
/// 2. `M: Mutability`: whether or not the `MappedPages` can be mutably borrowed.
/// * For ease of use, the default is [`Immutable`].
/// 3. `B: Borrow<MappedPages>`: enables the user of this type to use a borrow-able
/// wrapper type or reference around `MappedPages`.
/// * For ease of use, the default is just a plain `MappedPages` with no wrapper.
/// This default `MappedPages` type can be borrowed immutably or mutably.
/// * Example types that satisfy the bounds for `B` are `Arc<MappedPages`,
/// `Rc<MappedPages>`, `&MappedPages`, etc, all of which can only be
/// borrowed immutably via the `from()` method, as these types do not permit mutable access.
/// For mutable borrows, see the `from_mut()` method, which works with
/// types like `MappedPages` itself or `&mut MappedPages`.
///
/// ## Drop behavior
/// * When dropped, the borrow ends and the contained `MappedPages` is dropped and unmapped.
/// * Also, you can manually end the borrow to reclaim the inner `B` `MappedPages` type
/// via the [`Self::into_inner()`] method.
pub struct BorrowedMappedPages<T, M = Immutable, B = MappedPages>
where
T: FromBytes,
M: Mutability,
B: Borrow<MappedPages>,
{
ptr: Unique<T>,
mp: B,
_mut: PhantomData<M>,
}
impl<T: FromBytes, B: Borrow<MappedPages>> BorrowedMappedPages<T, Immutable, B> {
/// Immutably borrows the given `MappedPages` as an instance of type `&T`
/// located at the given `byte_offset` into the `MappedPages`.
///
/// See [`MappedPages::as_type()`] for more info.
///
/// ## Arguments
/// * `mp`: the `MappedPages` that you wish to immutably borrow as an instance of `&T`.
/// * See the type-level docs for more info and examples of how to use this argument.
/// * `byte_offset`: the offset (in number of bytes) from the beginning of the `MappedPages`
/// memory region at which the struct `T` is located (where it should start).
/// * This offset must be properly aligned with respect to the alignment requirements
/// of type `T`, otherwise an error will be returned.
///
/// Upon failure, this returns an error tuple containing the unmodified `mp` argument
/// and a string describing the error.
pub fn from(
mp: B,
byte_offset: usize,
) -> Result<Self, (B, &'static str)> {
Ok(Self {
ptr: match mp.borrow().as_type::<T>(byte_offset) {
Ok(r) => {
let nn: NonNull<T> = r.into();
nn.into()
}
Err(e_str) => return Err((mp, e_str)),
},
mp,
_mut: PhantomData,
})
}
}
impl<T: FromBytes, B: BorrowMut<MappedPages>> BorrowedMappedPages<T, Mutable, B> {
/// Mutably borrows the given `MappedPages` as an instance of type `&mut T`
/// located at the given `byte_offset` into the `MappedPages`.
///
/// See [`MappedPages::as_type_mut()`] for more info.
///
/// ## Arguments
/// * `mp`: the `MappedPages` that you wish to mutably borrow as an instance of `&mut T`.
/// * See the type-level docs for more info and examples of how to use this argument.
/// * `byte_offset`: the offset (in number of bytes) from the beginning of the `MappedPages`
/// memory region at which the struct `T` is located (where it should start).
/// * This offset must be properly aligned with respect to the alignment requirements
/// of type `T`, otherwise an error will be returned.
///
/// Upon failure, returns an error containing the unmodified `MappedPages`
/// and a string describing the error.
pub fn from_mut(
mut mp: B,
byte_offset: usize,
) -> Result<Self, (B, &'static str)> {
Ok(Self {
ptr: match mp.borrow_mut().as_type_mut::<T>(byte_offset) {
Ok(r) => r.into(),
Err(e_str) => return Err((mp, e_str)),
},
mp,
_mut: PhantomData,
})
}
}
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> BorrowedMappedPages<T, M, B> {
/// Consumes this object and returns the inner `MappedPages` value
/// (more specifically, the `Borrow`-able container holding the `MappedPages`).
pub fn into_inner(self) -> B {
self.mp
}
/// Returns a reference to the inner `MappedPages` value
/// (more specifically, the `Borrow`-able container holding the `MappedPages`).
pub fn inner_ref(&self) -> &B {
&self.mp
}
}
/// Both [`Mutable`] and [`Immutable`] [`BorrowedMappedPages`] can deref into `&T`.
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> Deref for BorrowedMappedPages<T, M, B> {
type Target = T;
fn deref(&self) -> &T {
// SAFETY:
// ✅ The pointer is properly aligned; its alignment has been checked in `MappedPages::as_type()`.
// ✅ The pointer is dereferenceable; it has been bounds checked by `MappedPages::as_type()`.
// ✅ The pointer has been initialized in the constructor `from()`.
// ✅ The lifetime of the returned reference `&T` is tied to the lifetime of the `MappedPages`,
// ensuring that the `MappedPages` object will persist at least as long as the reference.
unsafe { self.ptr.as_ref() }
}
}
/// Only [`Mutable`] [`BorrowedMappedPages`] can deref into `&mut T`.
impl<T: FromBytes, B: BorrowMut<MappedPages>> DerefMut for BorrowedMappedPages<T, Mutable, B> {
fn deref_mut(&mut self) -> &mut T {
// SAFETY:
// ✅ Same as the above `Deref` block, plus:
// ✅ The underlying `MappedPages` is guaranteed to be writable by `MappedPages::as_type_mut()`.
unsafe { self.ptr.as_mut() }
}
}
/// Both [`Mutable`] and [`Immutable`] [`BorrowedMappedPages`] implement `AsRef<T>`.
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> AsRef<T> for BorrowedMappedPages<T, M, B> {
fn as_ref(&self) -> &T { self.deref() }
}
/// Only [`Mutable`] [`BorrowedMappedPages`] implement `AsMut<T>`.
impl<T: FromBytes, B: BorrowMut<MappedPages>> AsMut<T> for BorrowedMappedPages<T, Mutable, B> {
fn as_mut(&mut self) -> &mut T { self.deref_mut() }
}
/// Both [`Mutable`] and [`Immutable`] [`BorrowedMappedPages`] implement `Borrow<T>`.
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> Borrow<T> for BorrowedMappedPages<T, M, B> {
fn borrow(&self) -> &T { self.deref() }
}
/// Only [`Mutable`] [`BorrowedMappedPages`] implement `BorrowMut<T>`.
impl<T: FromBytes, B: BorrowMut<MappedPages>> BorrowMut<T> for BorrowedMappedPages<T, Mutable, B> {
fn borrow_mut(&mut self) -> &mut T { self.deref_mut() }
}
// Forward the impls of `PartialEq`, `Eq`, `PartialOrd`, `Ord`, and `Hash`.
impl<T: FromBytes + PartialEq, M: Mutability, B: Borrow<MappedPages>> PartialEq for BorrowedMappedPages<T, M, B> {
fn eq(&self, other: &Self) -> bool { self.deref().eq(other.deref()) }
}
impl<T: FromBytes + Eq, M: Mutability, B: Borrow<MappedPages>> Eq for BorrowedMappedPages<T, M, B> { }
impl<T: FromBytes + PartialOrd, M: Mutability, B: Borrow<MappedPages>> PartialOrd for BorrowedMappedPages<T, M, B> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> { self.deref().partial_cmp(other.deref()) }
}
impl<T: FromBytes + Ord, M: Mutability, B: Borrow<MappedPages>> Ord for BorrowedMappedPages<T, M, B> {
fn cmp(&self, other: &Self) -> Ordering { self.deref().cmp(other.deref()) }
}
impl<T: FromBytes + Hash, M: Mutability, B: Borrow<MappedPages>> Hash for BorrowedMappedPages<T, M, B> {
fn hash<H: Hasher>(&self, state: &mut H) { self.deref().hash(state) }
}
/// A borrowed [`MappedPages`] object that derefs to a slice `&[T]` and optionally also `&mut [T]`.
///
/// See the docs of [`BorrowedMappedPages`] for more detail.
pub struct BorrowedSliceMappedPages<T, M = Immutable, B = MappedPages>
where
T: FromBytes,
M: Mutability,
B: Borrow<MappedPages>,
{
ptr: Unique<[T]>,
mp: B,
_mut: PhantomData<M>,
}
impl<T: FromBytes, B: Borrow<MappedPages>> BorrowedSliceMappedPages<T, Immutable, B> {
/// Immutably borrows the given `MappedPages` as a slice `&[T]`
/// of `length` elements of type `T` starting at the given `byte_offset` into the `MappedPages`.
///
/// See the docs of [`BorrowedMappedPages::from()`] and [`MappedPages::as_slice()`].
///
/// ## Arguments
/// * `mp`: the `MappedPages` that you wish to borrow as an instance of type `&[T]`.
/// * See the type-level docs for more info and examples of how to use this argument.
/// * `byte_offset`: the offset (in number of bytes) from the beginning of the `MappedPages`
/// memory region at which the slice `&[T]` is located (where it should start).
/// * This offset must be properly aligned with respect to the alignment requirements
/// of type `T`, otherwise an error will be returned.
/// * `length`: the length of the slice, i.e., the number of elements of type `T` in the slice.
/// Thus, the slice's address bounds will span the range from
/// `byte_offset` (inclusive) to `byte_offset + (size_of::<T>() * length)` (exclusive).
///
/// Upon failure, returns an error containing the unmodified `MappedPages`
/// and a string describing the error.
pub fn from(
mp: B,
byte_offset: usize,
length: usize,
) -> Result<Self, (B, &'static str)> {
Ok(Self {
ptr: match mp.borrow().as_slice::<T>(byte_offset, length) {
Ok(r) => {
let nn: NonNull<[T]> = r.into();
nn.into()
}
Err(e_str) => return Err((mp, e_str)),
},
mp,
_mut: PhantomData,
})
}
}
impl<T: FromBytes, B: BorrowMut<MappedPages>> BorrowedSliceMappedPages<T, Mutable, B> {
/// Mutably borrows the given `MappedPages` as a slice `&mut [T]`
/// of `length` elements of type `T` starting at the given `byte_offset` into the `MappedPages`.
///
/// See the docs of [`BorrowedMappedPages::from_mut()`] and [`MappedPages::as_slice_mut()`].
///
/// ## Arguments
/// * `mp`: the `MappedPages` that you wish to borrow as an instance of type `&mut [T]`.
/// * See the type-level docs for more info and examples of how to use this argument.
/// * `byte_offset`: the offset (in number of bytes) from the beginning of the `MappedPages`
/// memory region at which the slice `&mut [T]` is located (where it should start).
/// * This offset must be properly aligned with respect to the alignment requirements
/// of type `T`, otherwise an error will be returned.
/// * `length`: the length of the slice, i.e., the number of elements of type `T` in the slice.
/// Thus, the slice's address bounds will span the range from
/// `byte_offset` (inclusive) to `byte_offset + (size_of::<T>() * length)` (exclusive).
///
/// Upon failure, returns an error containing the unmodified `MappedPages`
/// and a string describing the error.
pub fn from_mut(
mut mp: B,
byte_offset: usize,
length: usize,
) -> Result<Self, (B, &'static str)> {
Ok(Self {
ptr: match mp.borrow_mut().as_slice_mut::<T>(byte_offset, length) {
Ok(r) => r.into(),
Err(e_str) => return Err((mp, e_str)),
},
mp,
_mut: PhantomData,
})
}
}
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> BorrowedSliceMappedPages<T, M, B> {
/// Consumes this object and returns the inner `MappedPages`.
pub fn into_inner(self) -> B {
self.mp
}
/// Returns a reference to the inner borrowed `MappedPages`.
pub fn inner_ref(&self) -> &B {
&self.mp
}
}
/// Both [`Mutable`] and [`Immutable`] [`BorrowedSliceMappedPages`] can deref into `&[T]`.
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> Deref for BorrowedSliceMappedPages<T, M, B> {
type Target = [T];
fn deref(&self) -> &[T] {
// SAFETY:
// ✅ The pointer is properly aligned; its alignment has been checked in `MappedPages::as_slice()`.
// ✅ The pointer is dereferenceable; it has been bounds checked by `MappedPages::as_slice()`.
// ✅ The pointer has been initialized in the constructor `from()`.
// ✅ The lifetime of the returned reference `&[T]` is tied to the lifetime of the `MappedPages`,
// ensuring that the `MappedPages` object will persist at least as long as the reference.
unsafe { self.ptr.as_ref() }
}
}
/// Only [`Mutable`] [`BorrowedSliceMappedPages`] can deref into `&mut T`.
impl<T: FromBytes, B: BorrowMut<MappedPages>> DerefMut for BorrowedSliceMappedPages<T, Mutable, B> {
fn deref_mut(&mut self) -> &mut [T] {
// SAFETY:
// ✅ Same as the above `Deref` block, plus:
// ✅ The underlying `MappedPages` is guaranteed to be writable by `MappedPages::as_slice_mut()`.
unsafe { self.ptr.as_mut() }
}
}
/// Both [`Mutable`] and [`Immutable`] [`BorrowedSliceMappedPages`] implement `AsRef<[T]>`.
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> AsRef<[T]> for BorrowedSliceMappedPages<T, M, B> {
fn as_ref(&self) -> &[T] { self.deref() }
}
/// Only [`Mutable`] [`BorrowedSliceMappedPages`] implement `AsMut<T>`.
impl<T: FromBytes, B: BorrowMut<MappedPages>> AsMut<[T]> for BorrowedSliceMappedPages<T, Mutable, B> {
fn as_mut(&mut self) -> &mut [T] { self.deref_mut() }
}
/// Both [`Mutable`] and [`Immutable`] [`BorrowedSliceMappedPages`] implement `Borrow<T>`.
impl<T: FromBytes, M: Mutability, B: Borrow<MappedPages>> Borrow<[T]> for BorrowedSliceMappedPages<T, M, B> {
fn borrow(&self) -> &[T] { self.deref() }
}
/// Only [`Mutable`] [`BorrowedSliceMappedPages`] implement `BorrowMut<T>`.
impl<T: FromBytes, B: BorrowMut<MappedPages>> BorrowMut<[T]> for BorrowedSliceMappedPages<T, Mutable, B> {
fn borrow_mut(&mut self) -> &mut [T] { self.deref_mut() }
}
// Forward the impls of `PartialEq`, `Eq`, `PartialOrd`, `Ord`, and `Hash`.
impl<T: FromBytes + PartialEq, M: Mutability, B: Borrow<MappedPages>> PartialEq for BorrowedSliceMappedPages<T, M, B> {
fn eq(&self, other: &Self) -> bool { self.deref().eq(other.deref()) }
}
impl<T: FromBytes + Eq, M: Mutability, B: Borrow<MappedPages>> Eq for BorrowedSliceMappedPages<T, M, B> { }
impl<T: FromBytes + PartialOrd, M: Mutability, B: Borrow<MappedPages>> PartialOrd for BorrowedSliceMappedPages<T, M, B> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> { self.deref().partial_cmp(other.deref()) }
}
impl<T: FromBytes + Ord, M: Mutability, B: Borrow<MappedPages>> Ord for BorrowedSliceMappedPages<T, M, B> {
fn cmp(&self, other: &Self) -> Ordering { self.deref().cmp(other.deref()) }
}
impl<T: FromBytes + Hash, M: Mutability, B: Borrow<MappedPages>> Hash for BorrowedSliceMappedPages<T, M, B> {
fn hash<H: Hasher>(&self, state: &mut H) { self.deref().hash(state) }
}
/// A marker type used to indicate that a [`BorrowedMappedPages`]
/// or [`BorrowedSliceMappedPages`] is borrowed mutably.
///
/// Implements the [`Mutability`] trait.
#[non_exhaustive]
pub struct Mutable { }
/// A marker type used to indicate that a [`BorrowedMappedPages`]
/// or [`BorrowedSliceMappedPages`] is borrowed immutably.
///
/// Implements the [`Mutability`] trait.
#[non_exhaustive]
pub struct Immutable { }
/// A trait for parameterizing a [`BorrowedMappedPages`]
/// or [`BorrowedSliceMappedPages`] as mutably or immutably borrowed.
///
/// Only [`Mutable`] and [`Immutable`] are able to implement this trait.
pub trait Mutability: private::Sealed { }
impl private::Sealed for Immutable { }
impl private::Sealed for Mutable { }
impl Mutability for Immutable { }
impl Mutability for Mutable { }
mod private {
pub trait Sealed { }
}