1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
//! This crate implements the main memory management subsystem for Theseus.
//!
//! The primary type of interest is [`MappedPages`], which offers a robust
//! interface that unifies the usage of arbitrary memory regions
//! with that of Rust's safe type system and lifetimes.
//!
//! ## Acknowledgments
//! Some of the internal page table management code was based on
//! Philipp Oppermann's [blog_os], but has since changed significantly.
//!
//! [blog_os]: https://github.com/phil-opp/blog_os
#![no_std]
#![feature(ptr_internals)]
#![feature(more_qualified_paths)]
extern crate alloc;
mod paging;
pub use self::paging::{
PageTable, Mapper, Mutability, Mutable, Immutable,
MappedPages, BorrowedMappedPages, BorrowedSliceMappedPages,
translate,
};
pub use memory_structs::*;
pub use page_allocator::{
AllocatedPages,
AllocationRequest,
allocate_pages_deferred,
allocate_pages_by_bytes_deferred,
allocate_pages,
allocate_pages_at,
allocate_pages_by_bytes,
allocate_pages_by_bytes_at,
allocate_pages_in_range,
allocate_pages_by_bytes_in_range,
dump_page_allocator_state,
};
pub use frame_allocator::{
AllocatedFrames,
UnmappedFrames,
allocate_frames_deferred,
allocate_frames_by_bytes_deferred,
allocate_frames,
allocate_frames_at,
allocate_frames_by_bytes,
allocate_frames_by_bytes_at,
dump_frame_allocator_state,
};
#[cfg(target_arch = "x86_64")]
use memory_x86_64::{tlb_flush_virt_addr, tlb_flush_all, get_p4, find_section_memory_bounds, get_vga_mem_addr};
#[cfg(target_arch = "aarch64")]
use memory_aarch64::{tlb_flush_virt_addr, tlb_flush_all, get_p4, find_section_memory_bounds};
pub use pte_flags::*;
use boot_info::{BootInformation, MemoryRegion};
use log::debug;
use spin::Once;
use sync_irq::IrqSafeMutex;
use alloc::{sync::Arc, vec::Vec};
use frame_allocator::{PhysicalMemoryRegion, MemoryRegionType, FramesIteratorRequest};
use no_drop::NoDrop;
pub use kernel_config::memory::PAGE_SIZE;
/// The memory management info and address space of the kernel
static KERNEL_MMI: Once<MmiRef> = Once::new();
/// A shareable reference to a `MemoryManagementInfo` struct wrapper in a lock.
pub type MmiRef = Arc<IrqSafeMutex<MemoryManagementInfo>>;
/// Returns a reference to the kernel's `MemoryManagementInfo`, if initialized.
/// If not, it returns `None`.
pub fn get_kernel_mmi_ref() -> Option<&'static MmiRef> {
KERNEL_MMI.get()
}
/// This holds all the information for a `Task`'s memory mappings and address space
/// (this is basically the equivalent of Linux's mm_struct)
#[derive(Debug)]
#[doc(alias("mmi"))]
pub struct MemoryManagementInfo {
/// the PageTable that should be switched to when this Task is switched to.
pub page_table: PageTable,
/// The list of additional memory mappings that have the same lifetime as this MMI
/// and are thus owned by this MMI.
/// This currently includes only the mappings for the heap and the early VGA buffer.
pub extra_mapped_pages: Vec<MappedPages>,
}
/// Mapping flags that can be used to map MMIO registers.
pub const MMIO_FLAGS: PteFlags = PteFlags::from_bits_truncate(
PteFlags::new().bits()
| PteFlags::VALID.bits()
| PteFlags::WRITABLE.bits()
| PteFlags::DEVICE_MEMORY.bits()
);
/// Mapping flags that can be used to map DMA (Direct Memory Access) memory.
pub const DMA_FLAGS: PteFlags = PteFlags::from_bits_truncate(
PteFlags::new().bits()
| PteFlags::VALID.bits()
| PteFlags::WRITABLE.bits()
);
/// A convenience function that creates a new memory mapping by allocating frames that are contiguous in physical memory.
/// If contiguous frames are not required, then see [`create_mapping()`](fn.create_mapping.html).
/// Returns a tuple containing the new `MappedPages` and the starting PhysicalAddress of the first frame,
/// which is a convenient way to get the physical address without walking the page tables.
///
/// # Locking / Deadlock
/// Currently, this function acquires the lock on the frame allocator and the kernel's `MemoryManagementInfo` instance.
/// Thus, the caller should ensure that the locks on those two variables are not held when invoking this function.
pub fn create_contiguous_mapping<F: Into<PteFlagsArch>>(
size_in_bytes: usize,
flags: F,
) -> Result<(MappedPages, PhysicalAddress), &'static str> {
let kernel_mmi_ref = get_kernel_mmi_ref().ok_or("create_contiguous_mapping(): KERNEL_MMI was not yet initialized!")?;
let allocated_pages = allocate_pages_by_bytes(size_in_bytes).ok_or("memory::create_contiguous_mapping(): couldn't allocate contiguous pages!")?;
let allocated_frames = allocate_frames_by_bytes(size_in_bytes).ok_or("memory::create_contiguous_mapping(): couldn't allocate contiguous frames!")?;
let starting_phys_addr = allocated_frames.start_address();
let mp = kernel_mmi_ref.lock().page_table.map_allocated_pages_to(allocated_pages, allocated_frames, flags)?;
Ok((mp, starting_phys_addr))
}
/// A convenience function that maps randomly-allocated pages to the given range of frames.
///
/// # Locking / Deadlock
/// Currently, this function acquires the lock on the frame allocator and the kernel's `MemoryManagementInfo` instance.
/// Thus, the caller should ensure that the locks on those two variables are not held when invoking this function.
pub fn map_frame_range<F: Into<PteFlagsArch>>(
start_address: PhysicalAddress,
size_in_bytes: usize,
flags: F,
) -> Result<MappedPages, &'static str> {
let kernel_mmi_ref = get_kernel_mmi_ref().ok_or("map_range(): KERNEL_MMI was not yet initialized!")?;
let allocated_pages = allocate_pages_by_bytes(size_in_bytes).ok_or("memory::map_range(): couldn't allocate contiguous pages!")?;
let allocated_frames = allocate_frames_by_bytes_at(start_address, size_in_bytes)
.map_err(|_| "memory::map_range(): couldn't allocate contiguous frames!")?;
kernel_mmi_ref.lock().page_table.map_allocated_pages_to(allocated_pages, allocated_frames, flags)
}
/// A convenience function that creates a new memory mapping. The pages allocated are contiguous in memory but there's
/// no guarantee that the frames they are mapped to are also contiguous in memory. If contiguous frames are required
/// then see [`create_contiguous_mapping()`](fn.create_contiguous_mapping.html).
/// Returns the new `MappedPages.`
///
/// # Locking / Deadlock
/// Currently, this function acquires the lock on the kernel's `MemoryManagementInfo` instance.
/// Thus, the caller should ensure that lock is not held when invoking this function.
pub fn create_mapping<F: Into<PteFlagsArch>>(
size_in_bytes: usize,
flags: F,
) -> Result<MappedPages, &'static str> {
let kernel_mmi_ref = get_kernel_mmi_ref().ok_or("create_contiguous_mapping(): KERNEL_MMI was not yet initialized!")?;
let allocated_pages = allocate_pages_by_bytes(size_in_bytes).ok_or("memory::create_mapping(): couldn't allocate pages!")?;
kernel_mmi_ref.lock().page_table.map_allocated_pages(allocated_pages, flags)
}
/// Creates an identity mapping at a random available virtual and physical address.
///
/// The returned `MappedPages` is guaranteed to have virtual pages mapped to physical frames
/// with the same virtual addresses as physical addresses.
pub fn create_identity_mapping<F: Into<PteFlagsArch>>(
num_pages: usize,
flags: F,
) -> Result<MappedPages, &'static str> {
let kernel_mmi_ref = get_kernel_mmi_ref()
.ok_or("create_identity_mapping(): KERNEL_MMI was not yet initialized!")?;
let mut allocated_pages = None;
// We first iterate over all free general-purpose frames,
// as there are far fewer available frames than available pages.
// Once we find a suitable free chunk of frames,
// we then attempt to allocate the corresponding identity pages,
// and if that succeeds, we allow the frame allocator to proceed
// with allocating the range of frames that matches those pages.
let allocated_frames = frame_allocator::inspect_then_allocate_free_frames(&mut |frames| {
if frames.size_in_frames() < num_pages {
// log::trace!("[{num_pages} pages] Skipping too small {:?}", frames);
return FramesIteratorRequest::Next;
}
let Some(start_vaddr) = VirtualAddress::new(frames.start_address().value()) else {
// log::trace!("[{num_pages} pages] Skipping {:?} with invalid starting vaddr", frames);
return FramesIteratorRequest::Next;
};
let Some(end_vaddr) = VirtualAddress::new(frames.end().start_address().value()) else {
// log::trace!("[{num_pages} pages] Skipping {:?} with invalid ending vaddr", frames);
return FramesIteratorRequest::Next;
};
let ap_result = allocate_pages_in_range(
num_pages,
&PageRange::new(
Page::containing_address(start_vaddr),
Page::containing_address(end_vaddr),
)
);
if let Ok(ap) = ap_result {
let start_addr = PhysicalAddress::new_canonical(ap.start_address().value());
allocated_pages = Some(ap);
// Tell the `inspect_then_allocate_free_frames` function that we want to proceed
// with allocating the identity frames corresponding to the pages allocated above.
FramesIteratorRequest::AllocateAt {
requested_frame: Frame::containing_address(start_addr),
num_frames: num_pages,
}
} else {
// log::trace!("[{num_pages} pages] Skipping {:?}, identity pages couldn't be allocated", frames);
FramesIteratorRequest::Next
}
});
match (allocated_pages, allocated_frames) {
(Some(ap), Ok(Some(af))) => {
assert!(ap.start_address().value() == af.start_address().value()); // sanity check
kernel_mmi_ref.lock().page_table.map_allocated_pages_to(ap, af, flags)
}
_ => Err("Couldn't allocate frames or pages for an identity mapping"),
}
}
static BROADCAST_TLB_SHOOTDOWN_FUNC: Once<fn(PageRange)> = Once::new();
/// Set the function callback that will be invoked every time a TLB shootdown is necessary,
/// i.e., during page table remapping and unmapping operations.
pub fn set_broadcast_tlb_shootdown_cb(func: fn(PageRange)) {
BROADCAST_TLB_SHOOTDOWN_FUNC.call_once(|| func);
}
/// Information returned after initialising the memory subsystem.
#[derive(Debug)]
pub struct InitialMemoryMappings {
/// The currently active page table.
pub page_table: PageTable,
/// The kernel's `.text` section mappings, which includes `.init`.
pub text: NoDrop<MappedPages>,
/// The kernel's `.rodata` section mappings.
pub rodata: NoDrop<MappedPages>,
/// The kernel's .`data` section mappings/
pub data: NoDrop<MappedPages>,
/// The kernel stack's guard page.
pub stack_guard: AllocatedPages,
/// The kernel's stack actual data page mappings.
pub stack: NoDrop<MappedPages>,
/// The boot information mappings.
pub boot_info: MappedPages,
/// The list of identity mappings that should be dropped before starting the first application.
///
/// Currently there are only 4 identity mappings, used for the base kernel image:
/// 1. the `.init` early text section,
/// 2. the full `.text` section,
/// 3. the `.rodata` section, which includes all read-only data,
/// 4. the `.data` section, which includes `.bss` and all read-write data.
pub identity: NoDrop<EarlyIdentityMappedPages>,
/// The list of additional mappings that must be kept forever.
///
/// Currently, this contains only one mapping: the early VGA buffer.
pub additional: NoDrop<MappedPages>,
}
/// The set of identity mappings that should be dropped before starting the first application.
///
/// Currently there are only 4 identity mappings, used for the base kernel image:
/// 1. the `.init` early text section,
/// 2. the full `.text` section,
/// 3. the `.rodata` section, which includes all read-only data,
/// 4. the `.data` section, which includes `.bss` and all read-write data.
#[derive(Debug)]
pub struct EarlyIdentityMappedPages {
_init: MappedPages,
_text: MappedPages,
_rodata: MappedPages,
_data: MappedPages,
}
/// Initializes the virtual memory management system.
/// Consumes the given BootInformation, because after the memory system is initialized,
/// the original BootInformation will be unmapped and inaccessible.
pub fn init(
boot_info: &impl BootInformation,
kernel_stack_start: VirtualAddress,
) -> Result<InitialMemoryMappings, &'static str> {
let low_memory_frames = FrameRange::from_phys_addr(PhysicalAddress::zero(), 0x10_0000); // suggested by most OS developers
// Now set up the list of free regions and reserved regions so we can initialize the frame allocator.
let mut free_regions: [Option<PhysicalMemoryRegion>; 32] = Default::default();
let mut free_index = 0;
let mut reserved_regions: [Option<PhysicalMemoryRegion>; 32] = Default::default();
let mut reserved_index = 0;
reserved_regions[reserved_index] = Some(PhysicalMemoryRegion::new(low_memory_frames, MemoryRegionType::Reserved));
reserved_index += 1;
#[cfg(target_arch = "x86_64")]
{
// Add the VGA display's memory region to the list of reserved physical memory areas.
// Currently this is covered by the first 1MiB region, but it's okay to duplicate it here.
let (vga_start_paddr, vga_size, _vga_flags) = memory_x86_64::get_vga_mem_addr()?;
let vga_display_frames = FrameRange::from_phys_addr(vga_start_paddr, vga_size);
reserved_regions[reserved_index] = Some(PhysicalMemoryRegion::new(vga_display_frames, MemoryRegionType::Reserved));
reserved_index += 1;
}
for region in boot_info.memory_regions()? {
let frames = FrameRange::from_phys_addr(region.start(), region.len());
if region.is_usable() {
free_regions[free_index] = Some(PhysicalMemoryRegion::new(frames, MemoryRegionType::Free));
free_index += 1;
} else {
reserved_regions[reserved_index] = Some(PhysicalMemoryRegion::new(frames, MemoryRegionType::Reserved));
reserved_index += 1;
}
}
for region in boot_info.additional_reserved_memory_regions()? {
reserved_regions[reserved_index] = Some(PhysicalMemoryRegion::new(
FrameRange::from_phys_addr(region.start, region.len),
MemoryRegionType::Reserved,
));
reserved_index += 1;
}
let into_alloc_frames_fn = frame_allocator::init(free_regions.iter().flatten(), reserved_regions.iter().flatten())?;
debug!("Initialized new frame allocator!");
frame_allocator::dump_frame_allocator_state();
page_allocator::init(
VirtualAddress::new(
// We subtract 1 when translating because `kernel_end` returns an exclusive
// upper bound, which can cause problems if the kernel ends on a page boundary.
// We then add it back later to get the correct identity virtual address.
translate(boot_info.kernel_end()? - 1)
.ok_or("couldn't translate kernel end virtual address")?
.value()
+ 1,
)
.ok_or("couldn't convert kernel end physical address into virtual address")?,
)?;
debug!("Initialized new page allocator!");
page_allocator::dump_page_allocator_state();
// Initialize paging, which creates a new page table and maps all of the current code/data sections into it.
paging::init(boot_info, kernel_stack_start, into_alloc_frames_fn)
}
/// Finishes initializing the memory management system after the heap is ready.
///
/// Returns the following tuple:
/// * The kernel's new [`MemoryManagementInfo`], representing the initial virtual address space,
/// * The kernel's list of identity-mapped [`MappedPages`],
/// which must not be dropped until all secondary CPUs are fully booted,
/// but *should* be dropped before starting the first application.
pub fn init_post_heap(
page_table: PageTable,
additional_mapped_pages: MappedPages,
heap_mapped_pages: MappedPages
) -> MmiRef {
// HERE: heap is initialized! We can now use `alloc` types.
page_allocator::convert_page_allocator_to_heap_based();
frame_allocator::convert_frame_allocator_to_heap_based();
let extra_mapped_pages = alloc::vec![additional_mapped_pages, heap_mapped_pages];
// Construct the kernel's memory mgmt info, i.e., its address space info
let kernel_mmi = MemoryManagementInfo {
page_table,
extra_mapped_pages,
};
let kernel_mmi_ref = KERNEL_MMI.call_once( || {
Arc::new(IrqSafeMutex::new(kernel_mmi))
});
kernel_mmi_ref.clone()
}