1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
//! An ixgbe driver for a 82599 10GbE Network Interface Card.
//!
//! Currently we support basic send and receive, Receive Side Scaling (RSS), 5-tuple filters, and MSI interrupts.
//! We also support language-level virtualization of the NIC so that applications can directly access their assigned transmit and receive queues.
//! When using virtualization, we disable RSS since we use 5-tuple filters to ensure packets are routed to the correct queues.
//! We also disable interrupts when using virtualization, since we do not yet have support for allowing applications to register their own interrupt handlers.
#![no_std]
#![allow(clippy::type_complexity)]
#![allow(dead_code)] // to suppress warnings for unused functions/methods
#![feature(abi_x86_interrupt)]
#[macro_use] extern crate log;
#[macro_use] extern crate lazy_static;
extern crate alloc;
extern crate spin;
extern crate sync_irq;
extern crate kernel_config;
extern crate memory;
extern crate pci;
extern crate pit_clock_basic;
extern crate bit_field;
extern crate interrupts;
extern crate pic;
extern crate cpu;
extern crate volatile;
extern crate mpmc;
extern crate rand;
extern crate hpet;
extern crate net;
extern crate nic_initialization;
extern crate intel_ethernet;
extern crate nic_buffers;
extern crate nic_queues;
extern crate physical_nic;
extern crate virtual_nic;
extern crate zerocopy;
extern crate hashbrown;
mod regs;
mod queue_registers;
pub mod virtual_function;
pub mod test_packets;
use regs::*;
use queue_registers::*;
use spin::Once;
use alloc::{
boxed::Box,
collections::VecDeque,
sync::Arc,
vec::Vec,
};
use sync_irq::IrqSafeMutex;
use memory::{PhysicalAddress, MappedPages, Mutable, BorrowedSliceMappedPages, BorrowedMappedPages, map_frame_range, MMIO_FLAGS};
use pci::{PciDevice, MsixVectorTable, PciConfigSpaceAccessMechanism, PciLocation};
use bit_field::BitField;
use interrupts::{register_msi_interrupt, InterruptHandler};
use hpet::get_hpet;
use nic_initialization::*;
use intel_ethernet::descriptors::{AdvancedRxDescriptor, AdvancedTxDescriptor};
use nic_buffers::{TransmitBuffer, ReceiveBuffer, ReceivedFrame};
use nic_queues::{RxQueue, TxQueue};
use rand::{
SeedableRng,
RngCore,
rngs::SmallRng
};
use core::mem::ManuallyDrop;
use hashbrown::HashMap;
/// Vendor ID for Intel
pub const INTEL_VEND: u16 = 0x8086;
/// Device ID for the 82599ES, used to identify the device from the PCI space
pub const INTEL_82599: u16 = 0x10FB;
/*** Hardware Device Parameters of the Intel 82599 NIC (taken from the datasheet) ***/
/// The maximum number of receive descriptors per queue.
/// This is the maximum value that has been tested for the 82599 device.
const IXGBE_MAX_RX_DESC: u16 = 8192;
/// The maximum number of transmit descriptors per queue.
/// This is the maximum value that has been tested for the 82599 device.
const IXGBE_MAX_TX_DESC: u16 = 8192;
/// The maximum number of rx queues available on this NIC.
const IXGBE_MAX_RX_QUEUES: u8 = 128;
/// The maximum number of tx queues available on this NIC.
const IXGBE_MAX_TX_QUEUES: u8 = 128;
/// The number of l34 5-tuple filters.
const NUM_L34_5_TUPLE_FILTERS: usize = 128;
/*** Developer Parameters of the Intel 82599 NIC ***/
/// The number of receive queues that are enabled.
/// Do NOT set this greater than 64 since the queues 65-128 don't seem to work,
/// most likely because they need additional configuration.
pub const IXGBE_NUM_RX_QUEUES_ENABLED: u8 = 64;
/// The number of transmit queues that are enabled.
/// Do NOT set this greater than 64 since the queues 65-128 don't seem to work,
/// most likely because they need additional configuration.
pub const IXGBE_NUM_TX_QUEUES_ENABLED: u8 = 64;
/// All the 82599 NICs found in the PCI space are initialized and then stored here.
pub static IXGBE_NICS: Once<Vec<IrqSafeMutex<IxgbeNic>>> = Once::new();
/// Returns a reference to the IxgbeNic wrapped in a IrqSafeMutex, if it exists and has been initialized.
/// Currently we use the pci location of the device as identification since it should not change after initialization.
pub fn get_ixgbe_nic(id: PciLocation) -> Result<&'static IrqSafeMutex<IxgbeNic>, &'static str> {
let nics = IXGBE_NICS.get().ok_or("Ixgbe NICs weren't initialized")?;
nics.iter()
.find( |nic| { nic.lock().dev_id == id } )
.ok_or("Ixgbe NIC with this ID does not exist")
}
/// Returns a reference to the list of all initialized ixgbe NICs
pub fn get_ixgbe_nics_list() -> Option<&'static Vec<IrqSafeMutex<IxgbeNic>>> {
IXGBE_NICS.get()
}
/// How many ReceiveBuffers are preallocated for this driver to use.
const RX_BUFFER_POOL_SIZE: usize = IXGBE_NUM_RX_QUEUES_ENABLED as usize * IXGBE_MAX_RX_DESC as usize * 2;
lazy_static! {
/// The pool of pre-allocated receive buffers that are used by the IXGBE NIC
/// and temporarily given to higher layers in the networking stack.
///
/// # Note
/// The capacity always has to be greater than the number of buffers in the queue, which is why we multiply by 2.
/// I'm not sure why that is, but if we try to add packets >= capacity, the addition does not make any progress.
static ref RX_BUFFER_POOL: mpmc::Queue<ReceiveBuffer> = mpmc::Queue::with_capacity(RX_BUFFER_POOL_SIZE * 2);
}
/// A struct representing an ixgbe network interface card.
pub struct IxgbeNic {
/// Device ID of the NIC assigned by the device manager.
dev_id: PciLocation,
/// Type of Base Address Register 0,
/// if it's memory mapped or I/O.
bar_type: u8,
/// MMIO Base Address
mem_base: PhysicalAddress,
/// Hashmap to store the interrupt number for each msi vector.
/// The key is the id of the queue the interrupt is generated for,
/// and the value is the interrupt number.
interrupt_num: HashMap<u8,u8>,
/// The actual MAC address burnt into the hardware
mac_hardware: [u8;6],
/// The optional spoofed MAC address to use in place of `mac_hardware` when transmitting.
mac_spoofed: Option<[u8; 6]>,
/// Memory-mapped control registers
regs1: BorrowedMappedPages<IntelIxgbeRegisters1, Mutable>,
/// Memory-mapped control registers
regs2: BorrowedMappedPages<IntelIxgbeRegisters2, Mutable>,
/// Memory-mapped control registers
regs3: BorrowedMappedPages<IntelIxgbeRegisters3, Mutable>,
/// Memory-mapped control registers
regs_mac: BorrowedMappedPages<IntelIxgbeMacRegisters, Mutable>,
/// Memory-mapped msi-x vector table
msix_vector_table: MsixVectorTable,
/// Array to store which L3/L4 5-tuple filters have been used.
/// There are 128 such filters available.
l34_5_tuple_filters: [bool; 128],
/// The number of rx queues enabled
num_rx_queues: u8,
/// Vector of the enabled rx queues
rx_queues: Vec<RxQueue<IxgbeRxQueueRegisters,AdvancedRxDescriptor>>,
/// Registers for the disabled queues
rx_registers_disabled: Vec<IxgbeRxQueueRegisters>,
/// The number of tx queues enabled
num_tx_queues: u8,
/// Vector of the enabled tx queues
tx_queues: Vec<TxQueue<IxgbeTxQueueRegisters,AdvancedTxDescriptor>>,
/// Registers for the disabled queues
tx_registers_disabled: Vec<IxgbeTxQueueRegisters>,
}
impl net::NetworkDevice for IxgbeNic {
fn send(&mut self, buf: TransmitBuffer) {
// When using the physical NIC interface, we send on queue 0 by default.
let queue_id = 0;
self.tx_queues[queue_id].send_on_queue(buf)
}
fn receive(&mut self) -> Option<ReceivedFrame> {
// by default, when using the physical NIC interface, we receive on queue 0.
let qid = 0;
// return one frame from the queue's received frames
self.rx_queues[qid].received_frames.pop_front()
}
fn mac_address(&self) -> [u8; 6] {
self.mac_spoofed.unwrap_or(self.mac_hardware)
}
}
// Functions that setup the NIC struct and handle the sending and receiving of packets.
impl IxgbeNic {
/// Store required values from the device's PCI config space, and initialize different features of the nic.
///
/// # Arguments
/// * `ixgbe_pci_dev`: Contains the pci device information for this NIC.
/// * `dev_id`: Device id as assigned by the device manager.
/// Currently this is just the pci location.
/// * `link_speed`: The link speed of the ethernet connection which depends on the SFI module attached to the cable.
/// We do not access the PHY module for link information yet and currently only support 1 Gbps and 10 Gbps links.
/// * `enable_virtualization`: True if language-level virtualization is enabled.
/// If this is true then interrupts and RSS need to be disabled. When the virtual NIC is created, these features
/// should be enabled on a per-queue basis. We do not support that as of yet.
/// * `interrupts`: A vector of packet reception interrupt handlers where the length of the vector is the number of
/// receive queues for which interrupts are enabled. We have currently tested for 16 receive queues.
/// The interrupt handler at index `i` is for receive queue `i`.
/// The number of handlers must be less than or equal to `IXGBE_NUM_RX_QUEUES_ENABLED`.
/// If interrupts are disabled, this should be set to None.
/// * `enable_rss`: true if receive side scaling is enabled.
/// * `rx_buffer_size_kbytes`: The size of receive buffers.
/// * `num_rx_descriptors`: The number of descriptors in each receive queue.
/// * `num_tx_descriptors`: The number of descriptors in each transmit queue.
#[allow(clippy::too_many_arguments)]
pub fn init(
ixgbe_pci_dev: &PciDevice,
dev_id: PciLocation,
enable_virtualization: bool,
interrupts: Option<Vec<InterruptHandler>>,
enable_rss: bool,
rx_buffer_size_kbytes: RxBufferSizeKiB,
num_rx_descriptors: u16,
num_tx_descriptors: u16
) -> Result<IrqSafeMutex<IxgbeNic>, &'static str> {
// Series of checks to determine if starting parameters are acceptable
if enable_virtualization && (interrupts.is_some() || enable_rss) {
return Err("Cannot enable virtualization when interrupts or RSS are enabled");
}
if let Some(ref ints) = interrupts {
if ints.len() > IXGBE_NUM_RX_QUEUES_ENABLED as usize {
return Err("The number of interrupts must be less than or equal to the number of Rx queues enabled");
}
}
if num_rx_descriptors > IXGBE_MAX_RX_DESC {
return Err("We can have a maximum of 8K receive descriptors per queue");
}
if (num_rx_descriptors as usize * core::mem::size_of::<AdvancedRxDescriptor>()) % 128 != 0 {
return Err("The total length in bytes of the Rx descriptor ring must be 128-byte aligned");
}
if num_tx_descriptors > IXGBE_MAX_TX_DESC {
return Err("We can have a maximum of 8K transmit descriptors per queue");
}
if (num_tx_descriptors as usize * core::mem::size_of::<AdvancedTxDescriptor>()) % 128 != 0 {
return Err("The total length in bytes of the Tx descriptor ring must be 128-byte aligned");
}
// Start the initialization procedure
let bar0 = ixgbe_pci_dev.bars[0];
// Determine the type from the base address register
let bar_type = (bar0 as u8) & 0x01;
// If the base address is not memory mapped then exit
if bar_type == PciConfigSpaceAccessMechanism::IoPort as u8 {
error!("ixgbe::init(): BAR0 is of I/O type");
return Err("ixgbe::init(): BAR0 is of I/O type")
}
// 16-byte aligned memory mapped base address
let mem_base = ixgbe_pci_dev.determine_mem_base(0)?;
// set the bus mastering bit for this PciDevice, which allows it to use DMA
ixgbe_pci_dev.pci_set_command_bus_master_bit();
// map the IntelIxgbeRegisters structs to the address found from the pci space
let (mut mapped_registers1, mut mapped_registers2, mut mapped_registers3, mut mapped_registers_mac,
mut rx_mapped_registers, mut tx_mapped_registers) = Self::mapped_reg(mem_base)?;
// map the msi-x vector table to an address found from the pci space
let mut vector_table = ixgbe_pci_dev.pci_mem_map_msix(IXGBE_MAX_MSIX_VECTORS)?;
// link initialization
Self::start_link(&mut mapped_registers1, &mut mapped_registers2, &mut mapped_registers3, &mut mapped_registers_mac)?;
// clear stats registers
Self::clear_stats(&mapped_registers2);
// store the mac address of this device
let mac_addr_hardware = Self::read_mac_address_from_nic(&mapped_registers_mac);
// initialize the buffer pool
init_rx_buf_pool(RX_BUFFER_POOL_SIZE, rx_buffer_size_kbytes as u16 * 1024, &RX_BUFFER_POOL)?;
// create the rx desc queues and their packet buffers
let (mut rx_descs, mut rx_buffers) = Self::rx_init(&mut mapped_registers1, &mut mapped_registers2, &mut rx_mapped_registers, num_rx_descriptors, rx_buffer_size_kbytes)?;
// create the vec of rx queues
let mut rx_queues = Vec::with_capacity(rx_descs.len());
let mut id = 0;
while !rx_descs.is_empty() {
let rx_queue = RxQueue {
id,
regs: rx_mapped_registers.remove(0),
rx_descs: rx_descs.remove(0),
num_rx_descs: num_rx_descriptors,
rx_cur: 0,
rx_bufs_in_use: rx_buffers.remove(0),
rx_buffer_size_bytes: rx_buffer_size_kbytes as u16 * 1024,
received_frames: VecDeque::new(),
cpu_id: None,
rx_buffer_pool: &RX_BUFFER_POOL,
filter_num: None
};
rx_queues.push(rx_queue);
id += 1;
}
// create the tx descriptor queues
let mut tx_descs = Self::tx_init(&mut mapped_registers2, &mut mapped_registers_mac, &mut tx_mapped_registers, num_tx_descriptors)?;
// create the vec of tx queues
let mut tx_queues = Vec::with_capacity(tx_descs.len());
let mut id = 0;
while !tx_descs.is_empty() {
let tx_queue = TxQueue {
id,
regs: tx_mapped_registers.remove(0),
tx_descs: tx_descs.remove(0),
num_tx_descs: num_tx_descriptors,
tx_cur: 0,
cpu_id: None,
};
tx_queues.push(tx_queue);
id += 1;
}
// enable msi-x interrupts if required and return the assigned interrupt numbers
let interrupt_num =
if let Some(interrupt_handlers) = interrupts {
// no need to disable legacy interrupts, it was done during device initialization.
// ixgbe_pci_dev.pci_set_interrupt_disable_bit(true);
ixgbe_pci_dev.pci_enable_msix()?;
Self::enable_msix_interrupts(&mut mapped_registers1, &mut rx_queues, &mut vector_table, &interrupt_handlers)?
}
else {
HashMap::new()
};
// enable Receive Side Scaling if required
if enable_rss {
Self::enable_rss(&mut mapped_registers2, &mut mapped_registers3)?;
}
// wait 10 seconds for the link to come up, as seen in other ixgbe drivers
Self::wait_for_link(&mapped_registers2, 10_000_000);
let ixgbe_nic = IxgbeNic {
dev_id,
bar_type,
mem_base,
interrupt_num,
mac_hardware: mac_addr_hardware,
mac_spoofed: None,
regs1: mapped_registers1,
regs2: mapped_registers2,
regs3: mapped_registers3,
regs_mac: mapped_registers_mac,
msix_vector_table: vector_table,
l34_5_tuple_filters: [false; NUM_L34_5_TUPLE_FILTERS],
num_rx_queues: IXGBE_NUM_RX_QUEUES_ENABLED,
rx_queues,
rx_registers_disabled: rx_mapped_registers,
num_tx_queues: IXGBE_NUM_TX_QUEUES_ENABLED,
tx_queues,
tx_registers_disabled: tx_mapped_registers,
};
info!("Link is up with speed: {} Mb/s", ixgbe_nic.link_speed() as u32);
Ok(IrqSafeMutex::new(ixgbe_nic))
}
/// Returns the device id of the PCI device.
pub fn device_id(&self) -> PciLocation {
self.dev_id
}
/// Returns the memory-mapped control registers of the nic and the rx/tx queue registers.
fn mapped_reg(
mem_base: PhysicalAddress
) -> Result<(
BorrowedMappedPages<IntelIxgbeRegisters1, Mutable>,
BorrowedMappedPages<IntelIxgbeRegisters2, Mutable>,
BorrowedMappedPages<IntelIxgbeRegisters3, Mutable>,
BorrowedMappedPages<IntelIxgbeMacRegisters, Mutable>,
Vec<IxgbeRxQueueRegisters>,
Vec<IxgbeTxQueueRegisters>
), &'static str> {
// We've divided the memory-mapped registers into multiple regions.
// The size of each region is found from the data sheet, but it always lies on a page boundary.
const GENERAL_REGISTERS_1_SIZE_BYTES: usize = 4096;
const RX_REGISTERS_SIZE_BYTES: usize = 4096;
const GENERAL_REGISTERS_2_SIZE_BYTES: usize = 4 * 4096;
const TX_REGISTERS_SIZE_BYTES: usize = 2 * 4096;
const MAC_REGISTERS_SIZE_BYTES: usize = 5 * 4096;
const GENERAL_REGISTERS_3_SIZE_BYTES: usize = 18 * 4096;
// Allocate memory for the registers, making sure each successive memory region begins where the previous region ended.
let mut physical_addr = mem_base;
let nic_regs1_mapped_page = map_frame_range(physical_addr, GENERAL_REGISTERS_1_SIZE_BYTES, MMIO_FLAGS)?;
physical_addr += GENERAL_REGISTERS_1_SIZE_BYTES;
let nic_rx_regs1_mapped_page = map_frame_range(physical_addr, RX_REGISTERS_SIZE_BYTES, MMIO_FLAGS)?;
physical_addr += RX_REGISTERS_SIZE_BYTES;
let nic_regs2_mapped_page = map_frame_range(physical_addr, GENERAL_REGISTERS_2_SIZE_BYTES, MMIO_FLAGS)?;
physical_addr += GENERAL_REGISTERS_2_SIZE_BYTES;
let nic_tx_regs_mapped_page = map_frame_range(physical_addr, TX_REGISTERS_SIZE_BYTES, MMIO_FLAGS)?;
physical_addr += TX_REGISTERS_SIZE_BYTES;
let nic_mac_regs_mapped_page = map_frame_range(physical_addr, MAC_REGISTERS_SIZE_BYTES, MMIO_FLAGS)?;
physical_addr += MAC_REGISTERS_SIZE_BYTES;
let nic_rx_regs2_mapped_page = map_frame_range(physical_addr, RX_REGISTERS_SIZE_BYTES, MMIO_FLAGS)?;
physical_addr += RX_REGISTERS_SIZE_BYTES;
let nic_regs3_mapped_page = map_frame_range(physical_addr, GENERAL_REGISTERS_3_SIZE_BYTES, MMIO_FLAGS)?;
// Map the memory as the register struct and tie the lifetime of the struct with its backing mapped pages
let regs1 = nic_regs1_mapped_page.into_borrowed_mut(0).map_err(|(_mp, err)| err)?;
let regs2 = nic_regs2_mapped_page.into_borrowed_mut(0).map_err(|(_mp, err)| err)?;
let regs3 = nic_regs3_mapped_page.into_borrowed_mut(0).map_err(|(_mp, err)| err)?;
let mac_regs = nic_mac_regs_mapped_page.into_borrowed_mut(0).map_err(|(_mp, err)| err)?;
// Divide the pages of the Rx queue registers into multiple 64B regions
let mut regs_rx = Self::mapped_regs_from_rx_memory(nic_rx_regs1_mapped_page);
regs_rx.append(&mut Self::mapped_regs_from_rx_memory(nic_rx_regs2_mapped_page));
// Divide the pages of the Tx queue registers into multiple 64B regions
let regs_tx = Self::mapped_regs_from_tx_memory(nic_tx_regs_mapped_page);
Ok((regs1, regs2, regs3, mac_regs, regs_rx, regs_tx))
}
/// Split the pages where rx queue registers are mapped into multiple smaller memory regions.
/// One region contains all the registers for a single queue.
fn mapped_regs_from_rx_memory(mp: MappedPages) -> Vec<IxgbeRxQueueRegisters> {
const QUEUES_IN_MP: usize = 64;
const RX_QUEUE_REGISTERS_SIZE_BYTES: usize = core::mem::size_of::<RegistersRx>();
assert!(mp.size_in_bytes() >= QUEUES_IN_MP * RX_QUEUE_REGISTERS_SIZE_BYTES);
let starting_address = mp.start_address();
// We share the backing mapped pages among all the queue registers
let shared_mp = Arc::new(mp);
let mut pointers_to_queues = Vec::with_capacity(QUEUES_IN_MP);
for i in 0..QUEUES_IN_MP {
// This is safe because we have checked that the number of queues we want to partition from these mapped pages fit into the allocated memory,
// and that each queue starts at the end of the previous.
// We also ensure that the backing mapped pages are included in the same struct as the registers, almost as a pseudo OwningRef
let registers = unsafe {
Box::from_raw((starting_address.value() + (i * RX_QUEUE_REGISTERS_SIZE_BYTES)) as *mut RegistersRx)
};
pointers_to_queues.push(
IxgbeRxQueueRegisters {
regs: ManuallyDrop::new(registers),
backing_pages: shared_mp.clone()
}
);
}
pointers_to_queues
}
/// Split the pages where tx queue registers are mapped into multiple smaller memory regions.
/// One region contains all the registers for a single queue.
fn mapped_regs_from_tx_memory(mp: MappedPages) -> Vec<IxgbeTxQueueRegisters> {
const QUEUES_IN_MP: usize = 128;
const TX_QUEUE_REGISTERS_SIZE_BYTES: usize = core::mem::size_of::<RegistersTx>();
assert!(mp.size_in_bytes() >= QUEUES_IN_MP * TX_QUEUE_REGISTERS_SIZE_BYTES);
let starting_address = mp.start_address();
// We share the backing mapped pages among all the queue registers
let shared_mp = Arc::new(mp);
let mut pointers_to_queues = Vec::with_capacity(QUEUES_IN_MP);
for i in 0..QUEUES_IN_MP {
// This is safe because we have checked that the number of queues we want to partition from these mapped pages fit into the allocated memory,
// and that each queue starts at the end of the previous.
// We also ensure that the backing mapped pages are included in the same struct as the registers, almost as a pseudo OwningRef
let registers = unsafe{ Box::from_raw((starting_address.value() + (i * TX_QUEUE_REGISTERS_SIZE_BYTES)) as *mut RegistersTx) };
pointers_to_queues.push(
IxgbeTxQueueRegisters {
regs: ManuallyDrop::new(registers),
backing_pages: shared_mp.clone()
}
);
}
pointers_to_queues
}
pub fn spoof_mac(&mut self, spoofed_mac_addr: [u8; 6]) {
self.mac_spoofed = Some(spoofed_mac_addr);
}
/// Reads the actual MAC address burned into the NIC hardware.
fn read_mac_address_from_nic(regs: &IntelIxgbeMacRegisters) -> [u8; 6] {
let mac_32_low = regs.ral.read();
let mac_32_high = regs.rah.read();
let mut mac_addr = [0; 6];
mac_addr[0] = mac_32_low as u8;
mac_addr[1] = (mac_32_low >> 8) as u8;
mac_addr[2] = (mac_32_low >> 16) as u8;
mac_addr[3] = (mac_32_low >> 24) as u8;
mac_addr[4] = mac_32_high as u8;
mac_addr[5] = (mac_32_high >> 8) as u8;
debug!("Ixgbe: read hardware MAC address: {:02x?}", mac_addr);
mac_addr
}
/// Acquires semaphore to synchronize between software and firmware (10.5.4)
fn acquire_semaphore(regs: &mut IntelIxgbeRegisters3) -> Result<bool, &'static str> {
// femtoseconds per millisecond
const FS_PER_MS: u64 = 1_000_000_000_000;
let hpet = get_hpet();
let hpet_ref = hpet.as_ref().ok_or("ixgbe::acquire_semaphore: couldn't get HPET timer")?;
let period_fs: u64 = hpet_ref.counter_period_femtoseconds() as u64;
// check that some other sofware is not using the semaphore
// 1. poll SWSM.SMBI bit until reads as 0 or 10ms timer expires
let start = hpet_ref.get_counter();
let mut timer_expired_smbi = false;
let mut smbi_bit = 1;
while smbi_bit != 0 {
smbi_bit = regs.swsm.read() & SWSM_SMBI;
let end = hpet_ref.get_counter();
let expiration_time = 10;
if (end-start) * period_fs / FS_PER_MS == expiration_time {
timer_expired_smbi = true;
break;
}
}
// now, hardware will auto write 1 to the SMBI bit
// check that firmware is not using the semaphore
// 1. write to SWESMBI bit
let set_swesmbi = regs.swsm.read() | SWSM_SWESMBI; // set bit 1 to 1
regs.swsm.write(set_swesmbi);
// 2. poll SWSM.SWESMBI bit until reads as 1 or 3s timer expires
let start = hpet_ref.get_counter();
let mut swesmbi_bit = 0;
let mut timer_expired_swesmbi = false;
while swesmbi_bit == 0 {
swesmbi_bit = (regs.swsm.read() & SWSM_SWESMBI) >> 1;
let end = hpet_ref.get_counter();
let expiration_time = 3000;
if (end-start) * period_fs / FS_PER_MS == expiration_time {
timer_expired_swesmbi = true;
break;
}
}
// software takes control of the requested resource
// 1. read firmware and software bits of sw_fw_sync register
let mut sw_fw_sync_smbits = regs.sw_fw_sync.read() & SW_FW_SYNC_SMBITS_MASK;
let sw_sync_shift = 3;
let fw_sync_shift = 8;
let sw_mac = (sw_fw_sync_smbits & SW_FW_SYNC_SW_MAC) >> sw_sync_shift;
let fw_mac = (sw_fw_sync_smbits & SW_FW_SYNC_FW_MAC) >> fw_sync_shift;
// clear sw sempahore bits if sw malfunctioned
if timer_expired_smbi {
sw_fw_sync_smbits &= !(SW_FW_SYNC_SMBITS_SW);
}
// clear fw semaphore bits if fw malfunctioned
if timer_expired_swesmbi {
sw_fw_sync_smbits &= !(SW_FW_SYNC_SMBITS_FW);
}
regs.sw_fw_sync.write(sw_fw_sync_smbits);
// check if semaphore bits for the resource are cleared
// then resources are available
if (sw_mac == 0) && (fw_mac == 0) {
//claim the sw resource by setting the bit
let sw_fw_sync = regs.sw_fw_sync.read() & SW_FW_SYNC_SW_MAC;
regs.sw_fw_sync.write(sw_fw_sync);
//clear bits in the swsm register
let swsm = regs.swsm.read() & !(SWSM_SMBI) & !(SWSM_SWESMBI);
regs.swsm.write(swsm);
Ok(true)
}
//resource is not available
else {
//clear bits in the swsm register
let swsm = regs.swsm.read() & !(SWSM_SMBI) & !(SWSM_SWESMBI);
regs.swsm.write(swsm);
Ok(false)
}
}
/// Release the semaphore synchronizing between software and firmware.
fn release_semaphore(regs: &mut IntelIxgbeRegisters3) {
// clear bit of released resource
let sw_fw_sync = regs.sw_fw_sync.read() & !(SW_FW_SYNC_SW_MAC);
regs.sw_fw_sync.write(sw_fw_sync);
// release semaphore
let _swsm = regs.swsm.read() & !(SWSM_SMBI) & !(SWSM_SWESMBI);
}
/// Software reset of NIC to get it running.
fn start_link (
regs1: &mut IntelIxgbeRegisters1,
regs2: &mut IntelIxgbeRegisters2,
regs3: &mut IntelIxgbeRegisters3,
regs_mac: &mut IntelIxgbeMacRegisters,
) -> Result<(), &'static str> {
//disable interrupts: write to EIMC registers, 1 in b30-b0, b31 is reserved
regs1.eimc.write(DISABLE_INTERRUPTS);
// master disable algorithm (sec 5.2.5.3.2)
// global reset = sw reset + link reset
let val = regs1.ctrl.read();
regs1.ctrl.write(val|CTRL_RST|CTRL_LRST);
//wait 10 ms
let wait_time = 10_000;
pit_clock_basic::pit_wait(wait_time)?;
//disable flow control.. write 0 TO FCTTV, FCRTL, FCRTH, FCRTV and FCCFG
for fcttv in regs2.fcttv.iter_mut() {
fcttv.write(0);
}
for fcrtl in regs2.fcrtl.iter_mut() {
fcrtl.write(0);
}
for fcrth in regs2.fcrth.iter_mut() {
fcrth.write(0);
}
regs2.fcrtv.write(0);
regs2.fccfg.write(0);
//disable interrupts
regs1.eimc.write(DISABLE_INTERRUPTS);
//wait for eeprom auto read completion
while !regs3.eec.read().get_bit(EEC_AUTO_RD as u8){}
//read MAC address
debug!("Ixgbe: MAC address low: {:#X}", regs_mac.ral.read());
debug!("Ixgbe: MAC address high: {:#X}", regs_mac.rah.read() & 0xFFFF);
//wait for dma initialization done (RDRXCTL.DMAIDONE)
let mut val = regs2.rdrxctl.read();
let dmaidone_bit = 1 << 3;
while val & dmaidone_bit != dmaidone_bit {
val = regs2.rdrxctl.read();
}
while Self::acquire_semaphore(regs3)? {
//wait 10 ms
pit_clock_basic::pit_wait(wait_time)?;
}
// setup PHY and the link
// From looking at other drivers and testing, it seems these registers are set automatically
// and driver doesn't need to configure link speed manually.
Self::release_semaphore(regs3);
// debug!("STATUS: {:#X}", regs1.status.read());
// debug!("CTRL: {:#X}", regs1.ctrl.read());
// debug!("LINKS: {:#X}", regs2.links.read()); //b7 and b30 should be 1 for link up
// debug!("AUTOC: {:#X}", regs2.autoc.read());
// debug!("AUTOC2: {:#X}", regs2.autoc2.read());
Ok(())
}
/// Returns value of (links, links2) registers
pub fn link_status(&self) -> (u32, u32) {
(self.regs2.links.read(), self.regs2.links2.read())
}
/// Returns link speed in Mb/s
pub fn link_speed(&self) -> LinkSpeedMbps {
let speed = self.regs2.links.read() & LINKS_SPEED_MASK;
LinkSpeedMbps::from_links_register_value(speed)
}
/// Wait for link to be up for upto 10 seconds.
fn wait_for_link(regs2: &IntelIxgbeRegisters2, total_wait_time_in_us: u32) {
// wait 10 ms between tries
let wait_time = 10_000;
// wait for a total of 10 s
let total_tries = total_wait_time_in_us / wait_time;
let mut tries = 0;
while (regs2.links.read() & LINKS_SPEED_MASK == 0) && (tries < total_tries) {
let _ = pit_clock_basic::pit_wait(wait_time); // wait, or try again regardless
tries += 1;
}
}
/// Clear the statistic registers by reading from them.
fn clear_stats(regs: &IntelIxgbeRegisters2) {
regs.gprc.read();
regs.gptc.read();
regs.gorcl.read();
regs.gorch.read();
regs.gotcl.read();
regs.gotch.read();
}
/// Returns the Rx and Tx statistics in the form: (Good Rx packets, Good Rx bytes, Good Tx packets, Good Tx bytes).
/// A good packet is one that is >= 64 bytes including ethernet header and CRC
pub fn get_stats(&self) -> (u32,u64,u32,u64){
let rx_bytes = ((self.regs2.gorch.read() as u64 & 0xF) << 32) | self.regs2.gorcl.read() as u64;
let tx_bytes = ((self.regs2.gotch.read() as u64 & 0xF) << 32) | self.regs2.gotcl.read() as u64;
(self.regs2.gprc.read(), rx_bytes, self.regs2.gptc.read(), tx_bytes)
}
/// Initializes the array of receive descriptors and their corresponding receive buffers,
/// and returns a tuple including both of them for all rx queues in use.
/// Also enables receive functionality for the NIC.
fn rx_init(
regs1: &mut IntelIxgbeRegisters1,
regs: &mut IntelIxgbeRegisters2,
rx_regs: &mut [IxgbeRxQueueRegisters],
num_rx_descs: u16,
rx_buffer_size_kbytes: RxBufferSizeKiB
) -> Result<(
Vec<BorrowedSliceMappedPages<AdvancedRxDescriptor, Mutable>>,
Vec<Vec<ReceiveBuffer>>
), &'static str> {
let mut rx_descs_all_queues = Vec::new();
let mut rx_bufs_in_use_all_queues = Vec::new();
Self::disable_rx_function(regs);
// program RXPBSIZE according to DCB and virtualization modes (both off)
regs.rxpbsize[0].write(RXPBSIZE_512KB);
for i in 1..8 {
regs.rxpbsize[i].write(0);
}
//CRC offloading
regs.hlreg0.write(regs.hlreg0.read() | HLREG0_CRC_STRIP);
regs.rdrxctl.write(regs.rdrxctl.read() | RDRXCTL_CRC_STRIP);
// Clear bits
regs.rdrxctl.write(regs.rdrxctl.read() & !RDRXCTL_RSCFRSTSIZE);
for qid in 0..IXGBE_NUM_RX_QUEUES_ENABLED {
let rxq = &mut rx_regs[qid as usize];
// get the queue of rx descriptors and their corresponding rx buffers
let (rx_descs, rx_bufs_in_use) = init_rx_queue(num_rx_descs as usize, &RX_BUFFER_POOL, rx_buffer_size_kbytes as usize * 1024, rxq)?;
//set the size of the packet buffers and the descriptor format used
let mut val = rxq.srrctl.read();
val.set_bits(0..4, rx_buffer_size_kbytes as u32);
val.set_bits(8..13, BSIZEHEADER_0B);
val.set_bits(25..27, DESCTYPE_ADV_1BUFFER);
val |= DROP_ENABLE;
rxq.srrctl.write(val);
//enable the rx queue
let val = rxq.rxdctl.read();
rxq.rxdctl.write(val | RX_Q_ENABLE);
//make sure queue is enabled
while rxq.rxdctl.read() & RX_Q_ENABLE == 0 {}
// set bit 12 to 0
let val = rxq.dca_rxctrl.read();
rxq.dca_rxctrl.write(val & !DCA_RXCTRL_CLEAR_BIT_12);
// Write the tail index.
// Note that the 82599 datasheet (section 8.2.3.8.5) states that we should set the RDT (tail index) to the index *beyond* the last receive descriptor,
// but we set it to the last receive descriptor for the same reason as the e1000 driver
rxq.rdt.write((num_rx_descs - 1) as u32);
rx_descs_all_queues.push(rx_descs);
rx_bufs_in_use_all_queues.push(rx_bufs_in_use);
}
Self::enable_rx_function(regs1,regs);
Ok((rx_descs_all_queues, rx_bufs_in_use_all_queues))
}
/// disable receive functionality
fn disable_rx_function(regs: &mut IntelIxgbeRegisters2) {
let val = regs.rxctrl.read();
regs.rxctrl.write(val & !RECEIVE_ENABLE);
}
/// enable receive functionality
fn enable_rx_function(regs1: &mut IntelIxgbeRegisters1,regs: &mut IntelIxgbeRegisters2) {
// set rx parameters of which type of packets are accepted by the nic
// right now we allow the nic to receive all types of packets, even incorrectly formed ones
regs.fctrl.write(STORE_BAD_PACKETS | MULTICAST_PROMISCUOUS_ENABLE | UNICAST_PROMISCUOUS_ENABLE | BROADCAST_ACCEPT_MODE);
// some magic numbers
regs1.ctrl_ext.write(regs1.ctrl_ext.read() | CTRL_EXT_NO_SNOOP_DIS);
// enable receive functionality
let val = regs.rxctrl.read();
regs.rxctrl.write(val | RECEIVE_ENABLE);
}
/// Initialize the array of transmit descriptors for all queues and returns them.
/// Also enables transmit functionality for the NIC.
fn tx_init(
regs: &mut IntelIxgbeRegisters2,
regs_mac: &mut IntelIxgbeMacRegisters,
tx_regs: &mut [IxgbeTxQueueRegisters],
num_tx_descs: u16
) -> Result<Vec<BorrowedSliceMappedPages<AdvancedTxDescriptor, Mutable>>, &'static str> {
// disable transmission
Self::disable_transmission(regs);
// CRC offload and small packet padding enable
regs.hlreg0.write(regs.hlreg0.read() | HLREG0_TXCRCEN | HLREG0_TXPADEN);
// Set RTTFCS.ARBDIS to 1
regs.rttdcs.write(regs.rttdcs.read() | RTTDCS_ARBDIS);
// program DTXMXSZRQ and TXPBSIZE according to DCB and virtualization modes (both off)
regs_mac.txpbsize[0].write(TXPBSIZE_160KB);
for i in 1..8 {
regs_mac.txpbsize[i].write(0);
}
regs_mac.dtxmxszrq.write(DTXMXSZRQ_MAX_BYTES);
// Clear RTTFCS.ARBDIS
regs.rttdcs.write(regs.rttdcs.read() & !RTTDCS_ARBDIS);
let mut tx_descs_all_queues = Vec::new();
for qid in 0..IXGBE_NUM_TX_QUEUES_ENABLED {
let txq = &mut tx_regs[qid as usize];
let tx_descs = init_tx_queue(num_tx_descs as usize, txq)?;
if qid == 0 {
// enable transmit operation, only have to do this for the first queue
Self::enable_transmission(regs);
}
// Set descriptor thresholds
// If we enable this then we need to change the packet send function to stop polling
// for a descriptor done on every packet sent
// txq.txdctl.write(TXDCTL_PTHRESH | TXDCTL_HTHRESH | TXDCTL_WTHRESH);
//enable tx queue
let val = txq.txdctl.read();
txq.txdctl.write(val | TX_Q_ENABLE);
//make sure queue is enabled
while txq.txdctl.read() & TX_Q_ENABLE == 0 {}
tx_descs_all_queues.push(tx_descs);
}
Ok(tx_descs_all_queues)
}
/// disable transmit functionality
fn disable_transmission(regs: &mut IntelIxgbeRegisters2) {
let val = regs.dmatxctl.read();
regs.dmatxctl.write(val & !TE);
}
/// enable transmit functionality
fn enable_transmission(regs: &mut IntelIxgbeRegisters2) {
let val = regs.dmatxctl.read();
regs.dmatxctl.write(val | TE);
}
/// Enable multiple receive queues with RSS.
/// Part of queue initialization is done in the rx_init function.
pub fn enable_rss(
regs2: &mut IntelIxgbeRegisters2,
regs3: &mut IntelIxgbeRegisters3
) -> Result<(), &'static str> {
// enable RSS writeback in the header field of the receive descriptor
regs2.rxcsum.write(RXCSUM_PCSD);
// enable RSS and set fields that will be used by hash function
// right now we're using the udp port and ipv4 address.
regs3.mrqc.write(MRQC_MRQE_RSS | MRQC_UDPIPV4 );
//set the random keys for the hash function
let seed = get_hpet().as_ref().ok_or("couldn't get HPET timer")?.get_counter();
let mut rng = SmallRng::seed_from_u64(seed);
for rssrk in regs3.rssrk.iter_mut() {
rssrk.write(rng.next_u32());
}
// Initialize the RSS redirection table
// each reta register has 4 redirection entries
// since mapping to queues is random and based on a hash, we randomly assign 1 queue to each reta register
let mut qid = 0;
for reta in regs3.reta.iter_mut() {
//set 4 entries to the same queue number
let val = qid << RETA_ENTRY_0_OFFSET | qid << RETA_ENTRY_1_OFFSET | qid << RETA_ENTRY_2_OFFSET | qid << RETA_ENTRY_3_OFFSET;
reta.write(val);
// next 4 entries will be assigned to the next queue
qid = (qid + 1) % IXGBE_NUM_RX_QUEUES_ENABLED as u32;
}
Ok(())
}
/// Enables Direct Cache Access for the device.
/// TODO: Not working yet because we need to have a separate driver for DCA
/// which enables it for the CPU and chipset, and registers devices that can use DCA (I think).
fn enable_dca(
regs: &mut IntelIxgbeRegisters3,
rxq: &mut Vec<RxQueue<IxgbeRxQueueRegisters,AdvancedRxDescriptor>>
) -> Result<(), &'static str> {
// Enable DCA tagging, which writes the cpu id to the PCIe Transaction Layer Packets (TLP)
// There are 2 version of DCA that are mentioned, legacy and 1.0
// We always enable 1.0 since (1) currently haven't found additional info online and (2) the linux driver always enables 1.0
regs.dca_ctrl.write(DCA_MODE_2 | DCA_CTRL_ENABLE);
Self::enable_rx_dca(rxq)
}
/// Sets up DCA for the rx queues that have been enabled.
/// You can optionally choose to have the descriptor, header and payload copied to the cache for each received packet
fn enable_rx_dca(
rx_queues: &mut Vec<RxQueue<IxgbeRxQueueRegisters, AdvancedRxDescriptor>>
) -> Result<(), &'static str> {
for rxq in rx_queues {
// the cpu id will tell which cache the data will need to be written to
let cpu_id = match rxq.cpu_id {
Some(cpu_id) => cpu_id,
None => cpu::bootstrap_cpu().ok_or("Couldn't read BSP CpuId")?,
}.into_u8() as u32;
// currently allowing only write of rx descriptors to cache since packet payloads are very large
// A note from linux ixgbe driver:
// " We can enable relaxed ordering for reads, but not writes when
// DCA is enabled. This is due to a known issue in some chipsets
// which will cause the DCA tag to be cleared."
rxq.regs.dca_rxctrl.write(RX_DESC_DCA_ENABLE | RX_HEADER_DCA_ENABLE | RX_PAYLOAD_DCA_ENABLE | RX_DESC_R_RELAX_ORDER_EN | (cpu_id << DCA_CPUID_SHIFT));
}
Ok(())
}
/// Sets the L3/L4 5-tuple filter which can do an exact match of the packet's header with the filter and send to chosen rx queue (7.1.2.5).
/// There are up to 128 such filters. If more are needed, will have to enable Flow Director filters.
///
/// # Argument
/// * `source_ip`: ipv4 source address
/// * `dest_ip`: ipv4 destination address
/// * `source_port`: TCP/UDP/SCTP source port
/// * `dest_port`: TCP/UDP/SCTP destination port
/// * `protocol`: IP L4 protocol
/// * `priority`: priority relative to other filters, can be from 0 (lowest) to 7 (highest)
/// * `qid`: number of the queue to forward packet to
#[allow(clippy::too_many_arguments)]
pub fn set_5_tuple_filter(
&mut self,
source_ip: Option<[u8;4]>,
dest_ip: Option<[u8;4]>,
source_port: Option<u16>,
dest_port: Option<u16>,
protocol: Option<FilterProtocol>,
priority: u8, qid: u8
) -> Result<u8, &'static str> {
if source_ip.is_none() && dest_ip.is_none() && source_port.is_none() && dest_port.is_none() && protocol.is_none() {
return Err("Must set one of the five filter options");
}
if priority > 7 {
return Err("Protocol cannot be higher than 7");
}
let enabled_filters = &mut self.l34_5_tuple_filters;
// find a free filter
let filter_num = enabled_filters.iter().position(|&r| !r).ok_or("Ixgbe: No filter available")?;
// start off with the filter mask set for all the filters, and clear bits for filters that are enabled
// bits 29:25 are set to 1.
let mut filter_mask = 0x3E000000;
// IP addresses are written to the registers in big endian form (LSB is first on wire)
// set the source ip address for the filter
if let Some (addr) = source_ip {
self.regs3.saqf[filter_num].write(((addr[3] as u32) << 24) | ((addr[2] as u32) << 16) | ((addr[1] as u32) << 8) | (addr[0] as u32));
filter_mask &= !FTQF_SOURCE_ADDRESS_MASK;
};
// set the destination ip address for the filter
if let Some(addr) = dest_ip {
self.regs3.daqf[filter_num].write(((addr[3] as u32) << 24) | ((addr[2] as u32) << 16) | ((addr[1] as u32) << 8) | (addr[0] as u32));
filter_mask &= !FTQF_DEST_ADDRESS_MASK;
};
// set the source port for the filter
if let Some(port) = source_port {
self.regs3.sdpqf[filter_num].write((port as u32) << SPDQF_SOURCE_SHIFT);
filter_mask &= !FTQF_SOURCE_PORT_MASK;
};
// set the destination port for the filter
if let Some(port) = dest_port {
let port_val = self.regs3.sdpqf[filter_num].read();
self.regs3.sdpqf[filter_num].write(port_val | (port as u32) << SPDQF_DEST_SHIFT);
filter_mask &= !FTQF_DEST_PORT_MASK;
};
// set the filter protocol
let mut filter_protocol = FilterProtocol::Other;
if let Some(protocol) = protocol {
filter_protocol = protocol;
filter_mask &= !FTQF_PROTOCOL_MASK;
};
// write the parameters of the filter
let filter_priority = (priority as u32 & FTQF_PRIORITY) << FTQF_PRIORITY_SHIFT;
self.regs3.ftqf[filter_num].write(filter_protocol as u32 | filter_priority | filter_mask | FTQF_Q_ENABLE);
//set the rx queue that the packets for this filter should be sent to
self.regs3.l34timir[filter_num].write(L34TIMIR_BYPASS_SIZE_CHECK | L34TIMIR_RESERVED | ((qid as u32) << L34TIMIR_RX_Q_SHIFT));
//mark the filter as used
enabled_filters[filter_num] = true;
Ok(filter_num as u8)
}
/// Disables the the L3/L4 5-tuple filter for the given filter number
/// but keeps the values stored in the filter registers.
fn disable_5_tuple_filter(&mut self, filter_num: u8) {
// disables filter by setting enable bit to 0
let val = self.regs3.ftqf[filter_num as usize].read();
self.regs3.ftqf[filter_num as usize].write(val | !FTQF_Q_ENABLE);
// sets the record in the nic struct to false
self.l34_5_tuple_filters[filter_num as usize] = false;
}
/// Enable MSI-X interrupts.
/// Currently all the msi vectors are for packet reception, one msi vector per receive queue.
/// The assumption here is that the interrupt handler at index i will be used for receive queue i.
/// The number of interrupt handlers is the number of msi vectors enabled.
fn enable_msix_interrupts(
regs: &mut IntelIxgbeRegisters1,
rxq: &mut Vec<RxQueue<IxgbeRxQueueRegisters,AdvancedRxDescriptor>>,
vector_table: &mut MsixVectorTable,
interrupt_handlers: &[InterruptHandler]
) -> Result<HashMap<u8,u8>, &'static str> {
let num_msi_vec_enabled = interrupt_handlers.len();
if rxq.len() < num_msi_vec_enabled { return Err("Not enough rx queues for the interrupts requested"); }
// set IVAR reg to enable interrupts for different queues
// each IVAR register controls 2 RX and 2 TX queues
let num_queues = num_msi_vec_enabled;
let queues_per_ivar_reg = 2;
let enable_interrupt_rx = 0x0080;
for queue in 0..num_queues {
let int_enable =
// an even number queue which means we'll write to the lower 16 bits
if queue % queues_per_ivar_reg == 0 {
(enable_interrupt_rx | queue) as u32
}
// otherwise we'll write to the upper 16 bits
// need to OR with previous value so that we don't write over a previous queue that's been enabled
else {
((enable_interrupt_rx | queue) << 16) as u32 | regs.ivar[queue / queues_per_ivar_reg].read()
};
regs.ivar[queue / queues_per_ivar_reg].write(int_enable);
// debug!("IVAR: {:#X}", regs.ivar.reg[queue / queues_per_ivar_reg].read());
}
//enable clear on read of EICR and MSI-X mode
let val = regs.gpie.read();
regs.gpie.write(val | GPIE_EIMEN | GPIE_MULTIPLE_MSIX | GPIE_PBA_SUPPORT);
// debug!("GPIE: {:#X}", regs.gpie.read());
// set eims bits to enable required interrupt
// the lower 16 bits are for the 16 receive queue interrupts
let mut val = 0;
for i in 0..num_msi_vec_enabled {
val |= EIMS_INTERRUPT_ENABLE << i;
}
regs.eims.write(val);
// debug!("EIMS: {:#X}", regs.eims.read());
//enable auto-clear of receive interrupts
regs.eiac.write(EIAC_RTXQ_AUTO_CLEAR);
//clear eicr
let _val = regs.eicr.read();
// debug!("EICR: {:#X}", val);
// set the throttling time for each interrupt
// minimum interrupt interval specified in 2us units
let interrupt_interval = 1; // 2us
for i in 0..num_msi_vec_enabled {
regs.eitr[i].write(interrupt_interval << EITR_ITR_INTERVAL_SHIFT);
}
let mut interrupt_nums = HashMap::with_capacity(num_msi_vec_enabled);
// Initialize msi vectors
for i in 0..num_msi_vec_enabled {
// register an interrupt handler and get an interrupt number that can be used for the msix vector
let msi_int_num = register_msi_interrupt(interrupt_handlers[i])?;
interrupt_nums.insert(rxq[i].id, msi_int_num);
// find core to redirect interrupt to
// we assume that the number of msi vectors are equal to the number of rx queues
let cpu_id = match rxq[i].cpu_id {
Some(cpu_id) => cpu_id,
None => cpu::bootstrap_cpu().ok_or("Couldn't read BSP CpuId")?,
};
vector_table[i].init(cpu_id, msi_int_num);
}
Ok(interrupt_nums)
}
/// Reads status and clears interrupt
fn clear_interrupt_status(&self) -> u32 {
self.regs1.eicr.read()
}
/// Removes `num_queues` Rx queues from this "physical" NIC device and gives up ownership of them.
/// This function is used when creating a virtual NIC that will own the returned queues.
fn take_rx_queues_from_physical_nic(
&mut self,
num_queues: usize
) -> Result<Vec<RxQueue<IxgbeRxQueueRegisters, AdvancedRxDescriptor>>, &'static str> {
// We always ensure queue 0 is kept for the physical NIC
if num_queues >= self.rx_queues.len() {
return Err("Not enough rx queues for the NIC to remove any");
}
let start_remove_index = self.rx_queues.len() - num_queues;
let queues = self.rx_queues.drain(start_remove_index..).collect();
Ok(queues)
}
/// Removes `num_queues` Tx queues from this "physical" NIC device and gives up ownership of them.
/// This function is when creating a virtual NIC that will own the returned queues.
fn take_tx_queues_from_physical_nic(
&mut self,
num_queues: usize
) -> Result<Vec<TxQueue<IxgbeTxQueueRegisters, AdvancedTxDescriptor>>, &'static str> {
// We always ensure queue 0 is kept for the physical NIC
if num_queues >= self.tx_queues.len() {
return Err("Not enough tx queues for the NIC to remove any");
}
let start_remove_index = self.tx_queues.len() - num_queues;
let queues = self.tx_queues.drain(start_remove_index..).collect();
Ok(queues)
}
}
/// Possible link speeds of the 82599 NIC
#[derive(PartialEq)]
pub enum LinkSpeedMbps {
LS100 = 100,
LS1000 = 1000,
LS10000 = 10000,
LSUnknown = 0,
}
impl LinkSpeedMbps {
/// Converts between a u32 and a LinkSpeedMbps enum.
/// The u32 number is the value in the links register that represents the link speed.
fn from_links_register_value(value: u32) -> LinkSpeedMbps {
if value == (1 << 28) {
Self::LS100
} else if value == (2 << 28) {
Self::LS1000
} else if value == (3 << 28) {
Self::LS10000
} else {
Self::LSUnknown
}
}
}
/// The set of receive buffer sizes that are accepted by the 82599 device.
#[derive(Copy, Clone)]
pub enum RxBufferSizeKiB {
Buffer1KiB = 1,
Buffer2KiB = 2,
Buffer3KiB = 3,
Buffer4KiB = 4,
Buffer5KiB = 5,
Buffer6KiB = 6,
Buffer7KiB = 7,
Buffer8KiB = 8,
Buffer9KiB = 9,
Buffer10KiB = 10,
Buffer11KiB = 11,
Buffer12KiB = 12,
Buffer13KiB = 13,
Buffer14KiB = 14,
Buffer15KiB = 15,
Buffer16KiB = 16
}
/// Options for the filter protocol used in the 5-tuple filters.
pub enum FilterProtocol {
Tcp = 0,
Udp = 1,
Sctp = 2,
Other = 3
}
/// A helper function to poll the nic receive queues (only for testing purposes).
pub fn rx_poll_mq(qid: usize, nic_id: PciLocation) -> Result<ReceivedFrame, &'static str> {
let nic_ref = get_ixgbe_nic(nic_id)?;
let mut nic = nic_ref.lock();
nic.rx_queues[qid].poll_queue_and_store_received_packets()?;
let frame = nic.rx_queues[qid].return_frame().ok_or("no frame")?;
Ok(frame)
}
/// A helper function to send a test packet on a nic transmit queue (only for testing purposes).
pub fn tx_send_mq(qid: usize, nic_id: PciLocation, packet: Option<TransmitBuffer>) -> Result<(), &'static str> {
let packet = packet.map(Ok).unwrap_or_else(test_packets::create_dhcp_test_packet)?;
let nic_ref = get_ixgbe_nic(nic_id)?;
let mut nic = nic_ref.lock();
nic.tx_queues[qid].send_on_queue(packet);
Ok(())
}
/// A generic interrupt handler that can be used for packet reception interrupts for any queue on any ixgbe nic.
/// It returns the interrupt number for the rx queue 'qid'.
fn rx_interrupt_handler(qid: u8, nic_id: PciLocation) -> Option<u8> {
match get_ixgbe_nic(nic_id) {
Ok(ixgbe_nic_ref) => {
let mut ixgbe_nic = ixgbe_nic_ref.lock();
let _ = ixgbe_nic.rx_queues[qid as usize].poll_queue_and_store_received_packets();
ixgbe_nic.interrupt_num.get(&qid).cloned()
}
Err(e) => {
error!("BUG: ixgbe_handler_{}(): {}", qid, e);
None
}
}
}