1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use core::{fmt, ops::{Deref, DerefMut}};
use spin::{Mutex, MutexGuard};
use crate::held_interrupts::{HeldInterrupts, hold_interrupts};

/// This type provides interrupt-safe MUTual EXclusion based on [spin::Mutex].
///
/// # Description
///
/// This structure behaves a lot like a normal Mutex. There are some differences:
///
/// - It may be used outside the runtime.
///   - A normal Mutex will fail when used without the runtime, this will just lock
///   - When the runtime is present, it will call the deschedule function when appropriate
/// - No lock poisoning. When a fail occurs when the lock is held, no guarantees are made
///
/// When calling rust functions from bare threads, such as C `pthread`s, this lock will be very
/// helpful. In other cases however, you are encouraged to use the locks from the standard
/// library.
///
/// # Simple examples
///
/// ```
/// use irq_safety;
/// let spin_mutex = irq_safety::MutexIrqSafe::new(0);
///
/// // Modify the data
/// {
///     let mut data = spin_mutex.lock();
///     *data = 2;
/// }
///
/// // Read the data
/// let answer =
/// {
///     let data = spin_mutex.lock();
///     *data
/// };
///
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread-safety example
///
/// ```
/// use irq_safety;
/// use std::sync::{Arc, Barrier};
///
/// let numthreads = 1000;
/// let spin_mutex = Arc::new(irq_safety::MutexIrqSafe::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(numthreads + 1));
///
/// for _ in (0..numthreads)
/// {
///     let my_barrier = barrier.clone();
///     let my_lock = spin_mutex.clone();
///     std::thread::spawn(move||
///     {
///         let mut guard = my_lock.lock();
///         *guard += 1;
///
///         // Release the lock to prevent a deadlock
///         drop(guard);
///         my_barrier.wait();
///     });
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, numthreads);
/// ```
pub struct MutexIrqSafe<T: ?Sized> {
    lock: Mutex<T>,
}

/// A guard to which the protected data can be accessed
///
/// When the guard falls out of scope it will release the lock.
pub struct MutexIrqSafeGuard<'a, T: ?Sized + 'a> {
    guard: MutexGuard<'a, T>,
    // `_held_irq` will be dropped after `guard`.
    // Rust guarantees that fields are dropped in the order of declaration.
    _held_irq: HeldInterrupts,
}

// Same unsafe impls as `std::sync::MutexIrqSafe`
unsafe impl<T: ?Sized + Send> Sync for MutexIrqSafe<T> {}
unsafe impl<T: ?Sized + Send> Send for MutexIrqSafe<T> {}

impl<T> MutexIrqSafe<T> {
    /// Creates a new spinlock wrapping the supplied data.
    ///
    /// May be used statically:
    ///
    /// ```
    /// use irq_safety;
    ///
    /// static MutexIrqSafe: irq_safety::MutexIrqSafe<()> = irq_safety::MutexIrqSafe::new(());
    ///
    /// fn demo() {
    ///     let lock = MutexIrqSafe.lock();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    pub const fn new(data: T) -> MutexIrqSafe<T> {
        MutexIrqSafe {
            lock: Mutex::new(data),
        }
    }

    /// Consumes this MutexIrqSafe, returning the underlying data.
    #[inline(always)]
    pub fn into_inner(self) -> T {
        self.lock.into_inner()
    }
}

impl<T: ?Sized> MutexIrqSafe<T> {
    /// Locks the spinlock and returns a guard.
    ///
    /// The returned value may be dereferenced for data access
    /// and the lock will be dropped when the guard falls out of scope.
    ///
    /// ```
    /// let mylock = irq_safety::MutexIrqSafe::new(0);
    /// {
    ///     let mut data = mylock.lock();
    ///     // The lock is now locked and the data can be accessed
    ///     *data += 1;
    ///     // The lock is implicitly dropped
    /// }
    ///
    /// ```
    #[inline(always)]
    pub fn lock(&self) -> MutexIrqSafeGuard<T> {
        loop {
            match self.try_lock() {
                Some(guard) => return guard,
                _ => {}
            }
        }
    }

    /// Returns `true` if the lock is currently held.
    ///
    /// # Safety
    ///
    /// This function provides no synchronization guarantees and so its result should be considered 'out of date'
    /// the instant it is called. Do not use it for synchronization purposes. However, it may be useful as a heuristic.
    #[inline(always)]
    pub fn is_locked(&self) -> bool {
        self.lock.is_locked()
    }

    /// Force unlock the spinlock.
    ///
    /// This is *extremely* unsafe if the lock is not held by the current
    /// thread. However, this can be useful in some instances for exposing the
    /// lock to FFI that doesn't know how to deal with RAII.
    ///
    /// If the lock isn't held, this is a no-op.
    pub unsafe fn force_unlock(&self) {
        self.lock.force_unlock()
    }

    /// Tries to lock the MutexIrqSafe. If it is already locked, it will return None. Otherwise it returns
    /// a guard within Some.
    #[inline(always)]
    pub fn try_lock(&self) -> Option<MutexIrqSafeGuard<T>> {
        if self.lock.is_locked() { return None; }
        let _held_irq = hold_interrupts();
        self.lock.try_lock().map(|guard| MutexIrqSafeGuard {
            guard,
            _held_irq,
        })
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the [`MutexIrqSafe`] mutably, and a mutable reference is guaranteed to be exclusive in Rust,
    /// no actual locking needs to take place -- the mutable borrow statically guarantees no locks exist. As such,
    /// this is a 'zero-cost' operation.
    ///
    /// # Example
    ///
    /// ```
    /// let mut lock = irq_safety::MutexIrqSafe::new(0);
    /// *lock.get_mut() = 10;
    /// assert_eq!(*lock.lock(), 10);
    /// ```
    #[inline(always)]
    pub fn get_mut(&mut self) -> &mut T {
        self.lock.get_mut()
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexIrqSafe<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self.lock.try_lock() {
            Some(guard) => write!(f, "MutexIrqSafe {{ data: {:?} }}", &*guard),
            None => write!(f, "MutexIrqSafe {{ <locked> }}"),
        }
    }
}

impl<T: ?Sized + Default> Default for MutexIrqSafe<T> {
    fn default() -> MutexIrqSafe<T> {
        MutexIrqSafe::new(Default::default())
    }
}

impl<'a, T: ?Sized> Deref for MutexIrqSafeGuard<'a, T> {
    type Target = T;

    fn deref<'b>(&'b self) -> &'b T { 
        & *(self.guard) 
    }
}

impl<'a, T: ?Sized> DerefMut for MutexIrqSafeGuard<'a, T> {
    fn deref_mut<'b>(&'b mut self) -> &'b mut T { 
        &mut *(self.guard)
    }
}