1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
//! Traits and types for expressing I/O transfers of both byte-wise and block-wise granularity.
//! 
//! The important items are summarized below:
//! * [`BlockReader`], [`BlockWriter`]: traits that represent I/O streams which can be read from
//!   or written to at the granularity of a single block (as the smallest transferable chunk).
//! * [`BlockIo`]: a parent trait that specifies the size in bytes of each block 
//!   in a block-based I/O stream.
//! * [`KnownLength`]: a trait that represents an I/O stream with a known length, 
//!   such as a disk drive.
//! * [`ByteReader`], [`ByteWriter`]: traits that represent I/O streams which can be read from
//!   or written to at the granularity of an individual byte.
//! * Wrapper types that allow byte-wise access atop block-based I/O streams:
//!   [`ByteReaderWrapper`], [`ByteWriterWrapper`], [`ByteReaderWriterWrapper`].
//!    * Notably, the [`blocks_from_bytes()`] function is useful for calculating the set of
//!      block-based I/O transfers that are needed to satisfy an arbitrary byte-wise transfer.
//!
//! For example, a storage device like a hard drive that supports transfers of 512-byte blocks
//! should implement `BlockIo`, `BlockReader`, `BlockWriter`, and `KnownLength` traits.
//! A user can then use those traits directly to transfer whole blocks to/from the device,
//! or wrap the storage device in one of the byte-wise reader/writer types 
//! in order to transfer arbitrary bytes (as little as one byte) at a time to/from the device.
//!
//! We also provide the [`LockableIo`] type for convenient use with I/O streams or devices
//! that exist behind a shared lock, e.g., `Arc<Mutex<IO>>`, `Mutex<IO>`, etc.
//! This allows you to access the I/O stream transparently through the lock by using traits
//! that the interior `IO` object implements, such as the block-wise I/O traits listed above.
//!
//! ## Stateless vs. Stateful I/O
//! Note that the above traits represent "stateless" access into I/O streams or devices,
//! in that successive read/write operations will not advance any kind of "offset" or cursor.
//!
//! To read or write while tracking the current offset into the I/O stream, 
//! we provide the [`ReaderWriter`], [`Reader`], and [`Writer`] structs,
//! which act as "stateful" wrappers around an underlying "stateless" I/O stream
//! (such as a stateless `ByteReader` or `ByteWriter`).
//! This offers a more convenient interface with more traditional I/O behavior,
//! in which the next read or write operation will start where the prior one ended.
//!

#![allow(clippy::range_plus_one)]
#![no_std]
#![feature(int_roundings)]

#[macro_use] extern crate alloc;
#[macro_use] extern crate delegate;
extern crate spin;
extern crate core2;
extern crate lockable;

#[cfg(test)]
mod test;

use core::{borrow::Borrow, cmp::min, marker::PhantomData, ops::{Deref, DerefMut, Range}};
use alloc::{boxed::Box, string::String, vec::Vec};
use lockable::Lockable;
use core2::io::{Seek, SeekFrom};


/// Errors that can be returned from I/O operations.
#[derive(Debug)]
pub enum IoError {
    /// An input parameter or argument was incorrect or invalid.
    InvalidInput,
    /// The I/O operation timed out and was canceled.
    TimedOut,
    /// A miscellaneous error occurred.
    Other(&'static str),
}

impl From<IoError> for core2::io::Error {
    fn from(io_error: IoError) -> Self {
        use core2::io::ErrorKind;
        match io_error {
            IoError::InvalidInput => ErrorKind::InvalidInput.into(),
            IoError::TimedOut     => ErrorKind::TimedOut.into(),
            IoError::Other(_)     => ErrorKind::Other.into(),
        }
    }
}

impl From<&'static str> for IoError {
    fn from(s: &'static str) -> IoError {
        IoError::Other(s)
    }
}

impl From<IoError> for String {
    fn from(e: IoError) -> String {
        let s: &'static str = e.into();
        String::from(s)
    }
}

impl From<IoError> for &'static str {
    fn from(io_error: IoError) -> Self {
        match io_error {
            IoError::InvalidInput => "invalid input",
            IoError::TimedOut     => "timed out",
            IoError::Other(s)     => s,
        }
    }
}


/// A parent trait used to specify the block size (in bytes)
/// of I/O transfers (read and write operations). 
/// See its use in [`BlockReader`] and [`BlockWriter`].
pub trait BlockIo {
    /// Returns the size in bytes of a single block (i.e., sector),
    /// the minimum granularity of I/O transfers.
    fn block_size(&self) -> usize;
}

impl<B> BlockIo for Box<B> where B: BlockIo + ?Sized {
    fn block_size(&self) -> usize { (**self).block_size() }
}
impl<B> BlockIo for &B where B: BlockIo + ?Sized {
    fn block_size(&self) -> usize { (**self).block_size() }
}
impl<B> BlockIo for &mut B where B: BlockIo + ?Sized {
    fn block_size(&self) -> usize { (**self).block_size() }
}


/// A trait that represents an I/O stream that has a known length, e.g., a disk drive.
///
/// This trait exists to enable seeking to an offset from the end of the stream.
#[allow(clippy::len_without_is_empty)]
pub trait KnownLength {
    /// Returns the length (size in bytes) of this I/O stream or device.
    fn len(&self) -> usize;
}

impl<KL> KnownLength for Box<KL> where KL: KnownLength + ?Sized {
    fn len(&self) -> usize { (**self).len() }
}
impl<KL> KnownLength for &KL where KL: KnownLength + ?Sized {
    fn len(&self) -> usize { (**self).len() }
}
impl<KL> KnownLength for &mut KL where KL: KnownLength + ?Sized {
    fn len(&self) -> usize { (**self).len() }
}


/// A trait that represents an I/O stream (e.g., an I/O device) that can be read from in blocks.
/// The block size specifies the minimum granularity of each transfer, 
/// as given by the [`BlockIo::block_size()`] function.
///
/// A `BlockReader` is not aware of the current block offset into the stream;
/// thus, each read operation requires a starting offset: 
/// the number of blocks from the beginning of the I/O stream at which the read should start.
pub trait BlockReader: BlockIo {
    /// Reads blocks of data from this reader into the given `buffer`.
    ///
    /// The number of blocks read is dictated by the length of the given `buffer`.
    ///
    /// # Arguments
    /// * `buffer`: the buffer into which data will be read. 
    ///    The length of this buffer must be a multiple of the block size.
    /// * `block_offset`: the offset in number of blocks from the beginning of this reader.
    ///
    /// # Return
    /// If successful, returns the number of blocks read into the given `buffer`. 
    /// Otherwise, returns an error.
    fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>;
}

impl<R> BlockReader for Box<R> where R: BlockReader + ?Sized {
    fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError> {
        (**self).read_blocks(buffer, block_offset)
    }
}
impl<R> BlockReader for &mut R where R: BlockReader + ?Sized {
    fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError> {
        (**self).read_blocks(buffer, block_offset)
    }
}

/// A trait that represents an I/O stream (e.g., an I/O device) that can be written to in blocks.
/// The block size specifies the minimum granularity of each transfer, 
/// as given by the [`BlockIo::block_size()`] function.
///
/// A `BlockWriter` is not aware of the current block offset into the stream;
/// thus, each write operation requires a starting offset: 
/// the number of blocks from the beginning of the I/O stream at which the write should start.
pub trait BlockWriter: BlockIo {
    /// Writes blocks of data from the given `buffer` to this writer.
    ///
    /// The number of blocks written is dictated by the length of the given `buffer`.
    ///
    /// # Arguments
    /// * `buffer`: the buffer from which data will be written. 
    ///    The length of this buffer must be a multiple of the block size.
    /// * `block_offset`: the offset in number of blocks from the beginning of this writer.
    ///
    /// # Return
    /// If successful, returns the number of blocks written to this writer. 
    /// Otherwise, returns an error.
    fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;

    /// Flushes this entire writer's output stream, 
    /// ensuring all contents in intermediate buffers are fully written out. 
    fn flush(&mut self) -> Result<(), IoError>;
}

impl<W> BlockWriter for Box<W> where W: BlockWriter + ?Sized {
    fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError> {
        (**self).write_blocks(buffer, block_offset)
    }
    fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}
impl<W> BlockWriter for &mut W where W: BlockWriter + ?Sized {
    fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError> {
        (**self).write_blocks(buffer, block_offset)
    }
    fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}


/// A trait that represents an I/O stream that can be read from at the granularity of individual bytes,
/// but which does not track the current offset into the stream.
///
/// # `ByteReader` implementation atop `BlockReader`
/// The [`ByteReader`] trait ideally _should be_ auto-implemented for any type
/// that implements the [`BlockReader`] trait,
/// to allow easy byte-wise access to a block-based I/O stream.
/// However, Rust does not allow trait specialization yet, so we cannot do this;
/// instead, use the [`ByteReaderWrapper`] type to accomplish this.
pub trait ByteReader {
    /// Reads bytes of data from this reader into the given `buffer`.
    ///
    /// The number of bytes read is dictated by the length of the given `buffer`.
    ///
    /// # Arguments
    /// * `buffer`: the buffer into which data will be copied.
    /// * `offset`: the offset in bytes from the beginning of this reader 
    ///    where the read operation will begin.
    ///
    /// # Return
    /// If successful, returns the number of bytes read into the given `buffer`. 
    /// Otherwise, returns an error.
    fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; 
}

impl<R> ByteReader for Box<R> where R: ByteReader + ?Sized {
    fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
        (**self).read_at(buffer, offset)
    }
}
impl<R> ByteReader for &mut R where R: ByteReader + ?Sized {
    fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
        (**self).read_at(buffer, offset)
    }
}


/// A trait that represents an I/O stream that can be written to,
/// but which does not track the current offset into the stream.
///
/// # `ByteWriter` implementation atop `BlockWriter`
/// The [`ByteWriter`] trait ideally _should be_ auto-implemented for any type 
/// that implements both the [`BlockWriter`] **and** [`BlockReader`] traits
/// to allow easy byte-wise access to a block-based I/O stream.
/// However, Rust does not allow trait specialization yet, so we cannot do this;
/// instead, use the [`ByteWriterWrapper`] type to accomplish this.
///
/// It is only possible to implement a byte-wise writer atop a block-wise writer AND reader together,
/// because it is often necessary to read an original block of data from the underlying stream
/// before writing a partial block back to the device.
/// This is required to avoid incorrectly overwriting unrelated byte ranges.
/// 
/// Note that other implementations of `ByteWriter` may not have this restriction,
/// e.g., when the underlying writer supports writing individual bytes.
pub trait ByteWriter {
    /// Writes bytes of data from the given `buffer` to this writer.
    ///
    /// The number of bytes written is dictated by the length of the given `buffer`.
    ///
    /// # Arguments
    /// * `buffer`: the buffer from which data will be copied. 
    /// * `offset`: the offset in number of bytes from the beginning of this writer
    ///    where the write operation will begin.
    ///
    /// # Return
    /// If successful, returns the number of bytes written to this writer. 
    /// Otherwise, returns an error.
    fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;

    /// Flushes this writer's output stream, 
    /// ensuring all contents in intermediate buffers are fully written out.
    fn flush(&mut self) -> Result<(), IoError>;
}

impl<R> ByteWriter for Box<R> where R: ByteWriter + ?Sized {
    fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError> {
        (**self).write_at(buffer, offset)
    }
    fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}
impl<R> ByteWriter for &mut R where R: ByteWriter + ?Sized {
    fn write_at(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError> {
        (**self).write_at(buffer, block_offset)
    }
    fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}


/// A wrapper struct that implements a byte-wise reader atop a block-based reader.
///
/// This ideally _should_ be realized via automatic trait implementations, 
/// in which all types that implement `BlockReader` also implement `ByteReader`, 
/// but we can't do that because Rust currently does not support specialization.
/// 
/// # Example
/// Use the `From` implementation around a `BlockReader` instance, such as:
/// ```ignore
/// // Assume `storage_dev` implements `BlockReader`
/// let bytes_read = ByteReaderWrapper::from(storage_dev).read_at(...);
/// ```
pub struct ByteReaderWrapper<R: BlockReader>(R);
impl<R> From<R> for ByteReaderWrapper<R> where R: BlockReader {
    fn from(block_reader: R) -> Self {
        ByteReaderWrapper(block_reader)
    }
} 
impl<R> ByteReader for ByteReaderWrapper<R> where R: BlockReader {
    fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
        let mut tmp_block_bytes: Vec<u8> = Vec::new(); // avoid unnecessary allocation

        let transfers = blocks_from_bytes(offset .. offset + buffer.len(), self.block_size());
        for transfer in transfers.iter().flatten() {
            let BlockByteTransfer { byte_range_absolute, block_range, bytes_in_block_range } = transfer;
            let buffer_range = byte_range_absolute.start - offset .. byte_range_absolute.end - offset;

            // If the transfer is block-aligned on both sides, then we can copy it directly into the `buffer`. 
            if bytes_in_block_range.start % self.block_size() == 0 && bytes_in_block_range.end % self.block_size() == 0 {
                let _blocks_read = self.read_blocks(&mut buffer[buffer_range], block_range.start);
            } 
            // Otherwise, we transfer a single block into a temp buffer and copy a sub-range of those bytes into `buffer`.
            else {
                if tmp_block_bytes.is_empty() {
                    tmp_block_bytes = vec![0; self.block_size() * block_range.len()];
                }
                let _blocks_read = self.read_blocks(&mut tmp_block_bytes, block_range.start)?;
                buffer[buffer_range].copy_from_slice(&tmp_block_bytes[bytes_in_block_range.clone()]);
            }
        }

        Ok(buffer.len())
    }
}
impl<R> BlockIo for ByteReaderWrapper<R> where R: BlockReader {
    delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<R> KnownLength for ByteReaderWrapper<R> where R: KnownLength + BlockReader {
    delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<R> BlockReader for ByteReaderWrapper<R> where R: BlockReader {
    delegate!{ to self.0 { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}


/// A wrapper struct that implements a byte-wise reader and writer
/// atop a block-based reader and writer.
///
/// This ideally _should_ be realized via automatic trait implementations, 
/// in which all types that implement `BlockReader + BlockWriter` 
/// also implement `ByteReader + ByteWriter`, 
/// but we cannot do that because Rust currently does not support specialization.
/// 
/// # Example
/// Use the `From` implementation around a `BlockReader + BlockWriter` instance, such as:
/// ```ignore
/// // Assume `storage_dev` implements `BlockReader + BlockWriter`
/// let mut reader_writer = ByteReaderWriterWrapper::from(storage_dev); 
/// let bytes_read = reader_writer.read_at(...);
/// let bytes_written = reader_writer.write_at(...);
/// ```
pub struct ByteReaderWriterWrapper<RW: BlockReader + BlockWriter>(RW);
impl<RW> From<RW> for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    fn from(block_reader_writer: RW) -> Self {
        ByteReaderWriterWrapper(block_reader_writer)
    }
}
impl<RW> ByteReader for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
        ByteReaderWrapper::from(&mut self.0).read_at(buffer, offset)
    }
}
impl<RW> ByteWriter for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError> {
        let mut tmp_block_bytes: Vec<u8> = Vec::new(); // avoid unnecessary allocation

        let transfers = blocks_from_bytes(offset .. offset + buffer.len(), self.block_size());
        for transfer in transfers.iter().flatten() {
            let BlockByteTransfer { byte_range_absolute, block_range, bytes_in_block_range } = transfer;
            let buffer_range = byte_range_absolute.start - offset .. byte_range_absolute.end - offset;

            // If the transfer is block-aligned on both sides, then we can write it directly 
            // from the `buffer` to the underlying block writer without reading any bytes first.
            if bytes_in_block_range.start % self.block_size() == 0 && bytes_in_block_range.end % self.block_size() == 0 {
                let _blocks_written = self.write_blocks(&buffer[buffer_range], block_range.start);
            } 
            // Otherwise, to transfer only *part* of a block (a sub-range of its bytes), we must:
            // 1. Read that whole block into a temporary buffer,
            // 2. Overwrite (copy) the sub-range of new bytes into that temp buffer,
            // 3. Write that whole block back to the underlying writer.
            else {
                if tmp_block_bytes.is_empty() {
                    tmp_block_bytes = vec![0; self.block_size() * block_range.len()];
                }
                let _blocks_read = self.read_blocks(&mut tmp_block_bytes, block_range.start)?;
                tmp_block_bytes[bytes_in_block_range.clone()].copy_from_slice(&buffer[buffer_range]);
                let _blocks_written = self.write_blocks(&tmp_block_bytes[..], block_range.start)?;
            }
        }

        Ok(buffer.len())
    }

    fn flush(&mut self) -> Result<(), IoError> {
        BlockWriter::flush(self)
    }
}
impl<RW> BlockIo for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<RW> KnownLength for ByteReaderWriterWrapper<RW> where RW: KnownLength + BlockReader + BlockWriter {
    delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<RW> BlockReader for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    delegate!{ to self.0 { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<RW> BlockWriter for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    delegate!{ to self.0 {
        fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}


/// A wrapper struct that implements a byte-wise writer
/// atop a block-based reader and writer.
///
/// This is effectively the same struct as [`ByteReaderWriterWrapper`],
/// but it allows *only* writing to the underlying I/O stream, not reading.
/// 
/// See the [`ByteWriter`] trait docs for an explanation of why both 
/// `BlockReader + BlockWriter` are required.
///
/// # Example
/// Use the `From` implementation around a `BlockReader + BlockWriter` instance, such as:
/// ```ignore
/// // Assume `storage_dev` implements `BlockReader + BlockWriter`
/// ByteReaderWriterWrapper::from(storage_dev).write_at(...);
/// ```
pub struct ByteWriterWrapper<RW: BlockReader + BlockWriter>(ByteReaderWriterWrapper<RW>);
impl<RW> From<RW> for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    fn from(block_reader_writer: RW) -> Self {
        ByteWriterWrapper(ByteReaderWriterWrapper(block_reader_writer))
    }
}
impl<RW> ByteWriter for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    delegate!{ to self.0 { fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>; } }
    fn flush(&mut self) -> Result<(), IoError> { ByteWriter::flush(&mut self.0) }
}
impl<RW> BlockIo for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<RW> KnownLength for ByteWriterWrapper<RW> where RW: KnownLength + BlockReader + BlockWriter {
    delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<RW> BlockWriter for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
    delegate!{ to self.0 { fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>; } }
    fn flush(&mut self) -> Result<(), IoError> { BlockWriter::flush(&mut self.0) }
}


/// A readable and writable "stateful" I/O stream that keeps track 
/// of its current offset within its internal stateless I/O stream.
///
/// ## Trait implementations
/// * This implements the [`core2::io::Read`] and [`core2::io::Write`] traits for read and write access.
/// * This implements the [`core2::io::Seek`] trait if the underlying I/O stream implements [`KnownLength`].
/// * This also forwards all other I/O-related traits implemented by the underlying I/O stream.
/// * This derefs into the inner `IO` type, via both [`Deref`] and [`DerefMut`].
pub struct ReaderWriter<IO> {
    io: IO,
    offset: u64,
}
impl<IO> ReaderWriter<IO> where IO: ByteReader + ByteWriter {
    /// Creates a new `ReaderWriter` with an initial offset of 0.
    pub fn new(io: IO) -> ReaderWriter<IO> {
        ReaderWriter { io, offset: 0 }
    }
}
impl<IO> Deref for ReaderWriter<IO> {
    type Target = IO;
    fn deref(&self) -> &Self::Target {
        &self.io
    }
}
impl<IO> DerefMut for ReaderWriter<IO> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.io
    }
}
impl<IO> core2::io::Read for ReaderWriter<IO> where IO: ByteReader {
    fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize> {
        let bytes_read = self.io.read_at(buf, self.offset as usize)
            .map_err(Into::<core2::io::Error>::into)?;
        self.offset += bytes_read as u64;
        Ok(bytes_read)
    }
}
impl<IO> core2::io::Write for ReaderWriter<IO> where IO: ByteWriter {
    fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize> {
        let bytes_written = self.io.write_at(buf, self.offset as usize)
            .map_err(Into::<core2::io::Error>::into)?;
        self.offset += bytes_written as u64;
        Ok(bytes_written)
    }

    fn flush(&mut self) -> core2::io::Result<()> {
        self.io.flush().map_err(Into::into)
    }    
}
impl<IO> Seek for ReaderWriter<IO> where IO: KnownLength {
    fn seek(&mut self, position: SeekFrom) -> core2::io::Result<u64> {
        let (base_pos, offset) = match position {
            SeekFrom::Start(n) => {
                self.offset = n;
                return Ok(n);
            }
            SeekFrom::Current(n) => (self.offset, n),
            SeekFrom::End(n) => (self.io.len() as u64, n),
        };
        let new_pos = if offset >= 0 {
            base_pos.checked_add(offset as u64)
        } else {
            base_pos.checked_sub((offset.wrapping_neg()) as u64)
        };
        if let Some(n) = new_pos {
            self.offset = n;
            Ok(self.offset)
        } else {
            Err(core2::io::Error::new(
                core2::io::ErrorKind::InvalidInput,
                "invalid seek to a negative or overflowing position",
            ))
        }
    }
}
// Implement (by delegation) various I/O traits for `ReaderWriter`.
impl<IO> BlockIo for ReaderWriter<IO> where IO: BlockIo {
    delegate!{ to self.io { fn block_size(&self) -> usize; } }
}
impl<IO> KnownLength for ReaderWriter<IO> where IO: KnownLength {
    delegate!{ to self.io { fn len(&self) -> usize; } }
}
impl<IO> BlockReader for ReaderWriter<IO> where IO: BlockReader {
    delegate!{ to self.io { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> BlockWriter for ReaderWriter<IO> where IO: BlockWriter {
    delegate!{ to self.io {
        fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>; 
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<IO> ByteReader for ReaderWriter<IO> where IO: ByteReader {
    delegate!{ to self.io { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> ByteWriter for ReaderWriter<IO> where IO: ByteWriter {
    delegate!{ to self.io {
        fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}


/// A stateful reader that keeps track of its current offset
/// within the internal stateless [`ByteReader`] I/O stream.
///
/// This implements the [`core2::io::Read`] trait for read-only access,
/// as well as the [`core2::io::Seek`] trait if the underlying I/O stream implements [`KnownLength`].
/// It also forwards all other read-only I/O-related traits implemented by the underlying I/O stream.
///
/// Note: this is implemented as a thin wrapper around [`ReaderWriter`].
pub struct Reader<R>(ReaderWriter<R>);
impl<R> Reader<R> where R: ByteReader {
    /// Creates a new `Reader` with an initial offset of 0.
    pub fn new(reader: R) -> Reader<R> {
        Reader(ReaderWriter { io: reader, offset: 0 } )
    }
}
// Implement (by delegation) various I/O traits for `Reader`
impl<IO> BlockIo for Reader<IO> where IO: BlockIo {
    delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<IO> KnownLength for Reader<IO> where IO: KnownLength {
    delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<IO> BlockReader for Reader<IO> where IO: BlockReader {
    delegate!{ to self.0 { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> ByteReader for Reader<IO> where IO: ByteReader {
    delegate!{ to self.0 { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> core2::io::Read for Reader<IO> where IO: ByteReader {
    delegate!{ to self.0 { fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize>; } }
}
impl<IO> Seek for Reader<IO> where IO: KnownLength {
    delegate!{ to self.0 { fn seek(&mut self, position: SeekFrom) -> core2::io::Result<u64>; } }
}


/// A stateful writer that keeps track of its current offset
/// within the internal stateless [`ByteWriter`] I/O stream.
///
/// This implements the [`core2::io::Write`] trait for write-only access,
/// as well as the [`core2::io::Seek`] trait if the underlying I/O stream implements [`KnownLength`].
/// It also forwards all other write-only I/O-related traits implemented by the underlying I/O stream.
///
/// Note: this is implemented as a thin wrapper around [`ReaderWriter`].
pub struct Writer<W>(ReaderWriter<W>);
impl<W: ByteWriter> Writer<W> {
    /// Creates a new `Writer` with an initial offset of 0.
    pub fn new(writer: W) -> Self {
        Writer(ReaderWriter { io: writer, offset: 0 } )
    }
}
// Implement (by delegation) various I/O traits for `Writer`.
impl<IO> BlockIo for Writer<IO> where IO: BlockIo {
    delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<IO> KnownLength for Writer<IO> where IO: KnownLength {
    delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<IO> BlockWriter for Writer<IO> where IO: BlockWriter {
    delegate!{ to self.0 {
        fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>; 
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<IO> ByteWriter for Writer<IO> where IO: ByteWriter {
    delegate!{ to self.0 {
        fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<IO> core2::io::Write for Writer<IO> where IO: ByteWriter {
    delegate!{ to self.0 { fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize>; } }
    fn flush(&mut self) -> core2::io::Result<()> { core2::io::Write::flush(&mut self.0) }
}
impl<IO> Seek for Writer<IO> where IO: KnownLength {
    delegate!{ to self.0 { fn seek(&mut self, position: SeekFrom) -> core2::io::Result<u64>; } }
}


/// A struct that holds an IO object wrapped in a [`Lockable`] type `L`, 
/// for the purpose of forwarding various IO-related traits through the lock to the `IO` type.
///
/// This allows an IO object inside of a lock type (e.g., `Mutex<IO>`, `Arc<Mutex<IO>>`) 
/// to be used as a type that implements some IO-specific trait, 
/// such as those listed in the crate-level documentation. 
///
/// The following traits are forwarded to the `IO` instance through the `Lockable` wrapper:
/// * [`BlockIo`]
/// * [`KnownLength`]
/// * [`BlockReader`] and [`BlockWriter`]
/// * [`ByteReader`] and [`ByteWriter`]
/// * [`core2::io::Read`], [`core2::io::Write`], and [`core2::io::Seek`]
/// * [`core::fmt::Write`]
///
/// # Usage and Examples
/// The Rust compiler has difficulty inferring all of the types needed in this struct; 
/// therefore, you must typically specify at least two types: 
///  1. `L`: the type of the lock itself, which implements `Lockable`.
///  2. `IO`, the inner type inside of the `Lockable` lock type `L`.
///
/// Here's an example of the minimal types that must be specified:
/// ```no_run
/// // `storage_dev` has the type `Arc<spin::Mutex<dyn Storage Device + Send>>`
/// let storage_dev = storage_manager::storage_devices().next().unwrap();
/// let fail = LockableIo::from(storage_dev); // <-- Error: rustc will complain!
/// let success = LockableIo::<dyn StorageDevice + Send, spin::Mutex<_>, _>::from(storage_dev);
/// let rw = ReaderWriter::new(ByteReaderWriterWrapper::from(success));
/// ```
///
/// You can optionally specify the type `IO` within the `Lockable` type `L`,
/// but Rustc can infer that once you specify the first type `IO`.
/// You can also optionally specify the final parameter `B: Borrow<L>`,
/// but Rustc can also infer that based on your argument to `LockableIo::from()`.
/// You can ask Rustc to infer both of those using the `_` character, as shown above.
#[derive(Debug)]
pub struct LockableIo<'io, IO, L, B> 
    where IO: 'io + ?Sized,
          L: for <'a> Lockable<'a, IO> + ?Sized,
          B: Borrow<L>,
{
    /// The actual `Borrow`-able type, which obviously must be Sized.
    /// This is typically an `Arc` or the `Lockable` type itself, e.g., a `Mutex`.
    inner: B,
    /// Phew ... this one is nasty. 
    /// Basically, `_phantom1` ideally *should* be `PhantomData<&'io IO>`.
    /// 
    /// However, that causes the `LockableIo` struct to be non-`Sync` no matter what
    /// the underlying types of `IO`, `L`, and `B` are, which is unacceptable and wrong. 
    /// 
    /// We want `LockableIo` to be `Send` and/or `Sync` as long as 
    /// the underlying type `L` is `Send` and/or `Sync`.
    /// 
    /// Thus, we use this weird trait object inside of PhantomData to indicate
    /// that what this struct actually holds is effectively a borrow-able object of type `L`,
    /// which is anything that implements `Lockable` under the hood, 
    /// typically something like `Arc<Mutex< IO >>`.
    /// Note that the interior types (Guard, GuardMut) do not actually matter,
    /// we just need to use the `'io` lifetime and the `IO` type parameter here.
    /// 
    /// We also add `Send + Sync` to the inner trait object's bounds,
    /// merely to ensure that this `PhantomData` object does not *prevent* the outer `LockableIo`
    /// type from auto-implementing `Send` and/or `Sync`.
    /// We want the compiler to determine and auto-implement `Send` and/or `Sync`
    /// based *solely* on whether `L` is `Send` and/or `Sync`.
    /// 
    /// Read more here: <https://users.rust-lang.org/t/looking-for-a-deeper-understanding-of-phantomdata/32477>
    _phantom1: PhantomData<dyn Lockable<'io, IO, Guard = (), GuardMut = ()> + Send + Sync>,
    /// This can be a regular `PhantomData` because we want the compiler to 
    /// auto-implement `Send` and/or `Sync` based on whether `B` and `L` are `Send` and/or `Sync`.
    _phantom2: PhantomData<L>,
}

impl<'io, IO, L, B> From<B> for LockableIo<'io, IO, L, B> 
    where IO: 'io + ?Sized,
          L: for <'a> Lockable<'a, IO> + ?Sized,
          B: Borrow<L>,
{
    fn from(lockable_io: B) -> Self {
        LockableIo {
            inner: lockable_io,
            _phantom1: PhantomData,
            _phantom2: PhantomData,
        }
    }
}

impl<'io, IO, L, B> Clone for LockableIo<'io, IO, L, B> 
    where IO: 'io + ?Sized,
          L: for <'a> Lockable<'a, IO> + ?Sized,
          B: Borrow<L> + Clone,
{
    fn clone(&self) -> Self {
        LockableIo {
            inner: self.inner.clone(),
            _phantom1: PhantomData,
            _phantom2: PhantomData,
        }
    }
}

impl<'io, IO, L, B> Deref for LockableIo<'io, IO, L, B> 
    where IO: 'io + ?Sized,
          L: for <'a> Lockable<'a, IO> + ?Sized,
          B: Borrow<L>,
{
    type Target = L;
    fn deref(&self) -> &L {
        self.inner.borrow()
    }
}

// Implement (by delegation) various I/O traits for the `LockableIo` wrapper around Mutex<trait>.
impl<'io, IO, L, B> BlockIo for LockableIo<'io, IO, L, B> 
    where IO: BlockIo + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock() { fn block_size(&self) -> usize; } }
}

impl<'io, IO, L, B> KnownLength for LockableIo<'io, IO, L, B>
    where IO: KnownLength + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock() { fn len(&self) -> usize; } }
}
impl<'io, IO, L, B> BlockReader for LockableIo<'io, IO, L, B>
    where IO: BlockReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> BlockWriter for LockableIo<'io, IO, L, B>
    where IO: BlockWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>; 
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<'io, IO, L, B> ByteReader for LockableIo<'io, IO, L, B>
    where IO: ByteReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> ByteWriter for LockableIo<'io, IO, L, B>
    where IO: ByteWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>; 
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<'io, IO, L, B> core2::io::Read for LockableIo<'io, IO, L, B>
    where IO: core2::io::Read + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize>; } }
}
impl<'io, IO, L, B> core2::io::Write for LockableIo<'io, IO, L, B>
    where IO: core2::io::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize>;
        fn flush(&mut self) -> core2::io::Result<()>;
    } }
}
impl<'io, IO, L, B> core2::io::Seek for LockableIo<'io, IO, L, B>
    where IO: core2::io::Seek + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn seek(&mut self, position: core2::io::SeekFrom) -> core2::io::Result<u64>; } }
}
impl<'io, IO, L, B> core::fmt::Write for LockableIo<'io, IO, L, B>
    where IO: core::fmt::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write_str(&mut self, s: &str) -> core::fmt::Result;
    } }
}


// Also implement the same set of I/O traits for an immutable reference `&LockableIo` wrapper,
// because `LockableIo` provides inner mutability.
// Here, we only re-implement the I/O traits with methods that require `&mut self`,
// because traits like `BlockIo` and `KnownLength` already have blanket implementations
// of themselves for `&self`.
impl<'io, IO, L, B> BlockReader for &LockableIo<'io, IO, L, B>
    where IO: BlockReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> BlockWriter for &LockableIo<'io, IO, L, B>
    where IO: BlockWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>; 
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<'io, IO, L, B> ByteReader for &LockableIo<'io, IO, L, B>
    where IO: ByteReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> ByteWriter for &LockableIo<'io, IO, L, B>
    where IO: ByteWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>; 
        fn flush(&mut self) -> Result<(), IoError>;
    } }
}
impl<'io, IO, L, B> core2::io::Read for &LockableIo<'io, IO, L, B>
    where IO: core2::io::Read + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize>; } }
}
impl<'io, IO, L, B> core2::io::Write for &LockableIo<'io, IO, L, B>
    where IO: core2::io::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize>;
        fn flush(&mut self) -> core2::io::Result<()>;
    } }
}
impl<'io, IO, L, B> core2::io::Seek for &LockableIo<'io, IO, L, B>
    where IO: core2::io::Seek + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() { fn seek(&mut self, position: core2::io::SeekFrom) -> core2::io::Result<u64>; } }
}
impl<'io, IO, L, B> core::fmt::Write for &LockableIo<'io, IO, L, B>
    where IO: core::fmt::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
    delegate!{ to self.lock_mut() {
        fn write_str(&mut self, s: &str) -> core::fmt::Result;
    } }
}


/// Calculates block-wise bounds for an I/O transfer 
/// based on a byte-wise range into a block-wise stream.
///
/// This function returns transfer operations that prioritize using
/// fewer temporary buffers and fewer data copy operations between those buffers
/// instead of prioritizing issuing fewer I/O transfer operations.
/// If you prefer to issue a single I/O transfer to cover the whole range of byte
/// (which may be faster depending on the underlying I/O device),
/// then you should not use this function.
/// 
/// There are up to three transfer operations that can possibly occur,
/// depending on the alignment of the byte-wise range:
/// 1. A partial single-block transfer of some bytes in the first block, 
///    only if the start of `byte_range` is not aligned to `block_size`.
/// 2. A multi-block transfer of contiguous whole blocks, 
///    only if `byte_range` spans more than 2 blocks.  
/// 3. A partial single-block transfer of some bytes in the last block,
///    only if the end of `byte_range` is not aligned to `block_size`.
/// 
/// # Example
/// Given a read request for a `byte_range` of `1500..3950` and a `block_size` of `512` bytes,
/// this function will return the following three transfer operations:
/// 1. Read 1 block (block `2`) and transfer the last 36 bytes of that block (`476..512`)
///    into the byte range `1500..1536`.
/// 2. Read 4 blocks (blocks `3..7`) and transfer all of those 2048 bytes
///    into the byte range `1536..3584`.
/// 3. Read 1 block (block `7`) and transfer the first 366 bytes of that block (`0..366`)
///    into the byte range `3584..3950`.
///
/// # Arguments
/// * `byte_range`: the absolute range of bytes where the I/O transfer starts and ends,
///    specified as absolute offsets from the beginning of the block-wise I/O stream.
/// * `block_size`: the size in bytes of each block in the block-wise I/O stream.
/// 
/// # Return
/// Returns a list of the three above transfer operations, 
/// enclosed in `Option`s to convey that not all operations may be necessary.
/// 
pub fn blocks_from_bytes(
    byte_range: Range<usize>,
    block_size: usize
) -> [Option<BlockByteTransfer>; 3] {
    
    let mut transfers = [None, None, None];
    let mut transfer_idx = 0;

    let last_block = byte_range.end / block_size;
    let offset_into_last_block  = byte_range.end % block_size; 

    let mut curr_byte = byte_range.start;

    while curr_byte < byte_range.end {
        let curr_block = curr_byte / block_size;
        let offset_into_curr_block = curr_byte % block_size;

        // If the curr_byte is block-aligned, then we can do a multi-block transfer.
        if offset_into_curr_block == 0 {
            // Determine what the last block of this transfer should be.
            // Special case: if the last byte is block-aligned, this transfer can cover all remaining bytes. 
            if offset_into_last_block == 0 {
                transfers[transfer_idx] = Some(BlockByteTransfer {
                    byte_range_absolute: curr_byte .. byte_range.end,
                    block_range: curr_block .. last_block,
                    bytes_in_block_range: 0 .. (last_block - curr_block) * block_size,
                });
                break; // this is the final transfer
            }
            // Otherwise, if the last byte is NOT block-aligned, this transfer can only extend up until the beginning of the last block 
            // (through the end of the second-to-last block).
            // Unless, that is, it's the final transfer because the end of the byte range is within the current block.  
            else {
                let end_byte = if byte_range.end - curr_byte > block_size {
                    round_down(byte_range.end, block_size) 
                } else {
                    byte_range.end
                };
                transfers[transfer_idx] = Some(BlockByteTransfer {
                    byte_range_absolute: curr_byte .. end_byte,
                    block_range: curr_block .. (end_byte.next_multiple_of(block_size) / block_size),
                    bytes_in_block_range: 0 .. (end_byte - curr_byte),
                });
                transfer_idx += 1;
                curr_byte = end_byte;
            }
        }
        // Otherwise, if the curr_byte is NOT block-aligned, then we can only do a single-block transfer.
        else {
            let end_byte = min(byte_range.end, curr_byte.next_multiple_of(block_size));
            transfers[transfer_idx] = Some(BlockByteTransfer {
                byte_range_absolute: curr_byte .. end_byte,
                block_range: curr_block .. curr_block + 1, // just one block
                bytes_in_block_range: offset_into_curr_block .. (offset_into_curr_block + (end_byte - curr_byte)),
            });
            transfer_idx += 1;
            curr_byte = end_byte;
        }

    }

    transfers
}


/// Describes an operation for performing byte-wise I/O on a block-based I/O stream.
/// 
/// See [`blocks_from_bytes()`] for more details.
#[derive(Debug)]
#[cfg_attr(test, derive(PartialEq, Eq))]
pub struct BlockByteTransfer {
    /// The byte-wise range specified in absolute bytes from the beginning of an I/O stream.
    /// The size of this range should equal the size of `bytes_in_block_range`.
    pub byte_range_absolute: Range<usize>,
    /// The range of blocks to transfer.
    pub block_range: Range<usize>,
    /// The range of bytes relative to the blocks specified by `block_range`.
    /// The size of this range should equal the size of `byte_range_absolute`.
    ///
    /// For example, a range of `0..10` specifies that the first 10 bytes of the `block_range`
    /// are what should be transferred to/from the `byte_range_absolute`.
    pub bytes_in_block_range: Range<usize>,
}

/// Rounds the given `value` down to the nearest `multiple`.
#[inline]
fn round_down(value: usize, multiple: usize) -> usize {
    (value / multiple) * multiple
}