1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
//! Traits and types for expressing I/O transfers of both byte-wise and block-wise granularity.
//!
//! The important items are summarized below:
//! * [`BlockReader`], [`BlockWriter`]: traits that represent I/O streams which can be read from
//! or written to at the granularity of a single block (as the smallest transferable chunk).
//! * [`BlockIo`]: a parent trait that specifies the size in bytes of each block
//! in a block-based I/O stream.
//! * [`KnownLength`]: a trait that represents an I/O stream with a known length,
//! such as a disk drive.
//! * [`ByteReader`], [`ByteWriter`]: traits that represent I/O streams which can be read from
//! or written to at the granularity of an individual byte.
//! * Wrapper types that allow byte-wise access atop block-based I/O streams:
//! [`ByteReaderWrapper`], [`ByteWriterWrapper`], [`ByteReaderWriterWrapper`].
//! * Notably, the [`blocks_from_bytes()`] function is useful for calculating the set of
//! block-based I/O transfers that are needed to satisfy an arbitrary byte-wise transfer.
//!
//! For example, a storage device like a hard drive that supports transfers of 512-byte blocks
//! should implement `BlockIo`, `BlockReader`, `BlockWriter`, and `KnownLength` traits.
//! A user can then use those traits directly to transfer whole blocks to/from the device,
//! or wrap the storage device in one of the byte-wise reader/writer types
//! in order to transfer arbitrary bytes (as little as one byte) at a time to/from the device.
//!
//! We also provide the [`LockableIo`] type for convenient use with I/O streams or devices
//! that exist behind a shared lock, e.g., `Arc<Mutex<IO>>`, `Mutex<IO>`, etc.
//! This allows you to access the I/O stream transparently through the lock by using traits
//! that the interior `IO` object implements, such as the block-wise I/O traits listed above.
//!
//! ## Stateless vs. Stateful I/O
//! Note that the above traits represent "stateless" access into I/O streams or devices,
//! in that successive read/write operations will not advance any kind of "offset" or cursor.
//!
//! To read or write while tracking the current offset into the I/O stream,
//! we provide the [`ReaderWriter`], [`Reader`], and [`Writer`] structs,
//! which act as "stateful" wrappers around an underlying "stateless" I/O stream
//! (such as a stateless `ByteReader` or `ByteWriter`).
//! This offers a more convenient interface with more traditional I/O behavior,
//! in which the next read or write operation will start where the prior one ended.
//!
#![allow(clippy::range_plus_one)]
#![no_std]
#![feature(int_roundings)]
#[macro_use] extern crate alloc;
#[macro_use] extern crate delegate;
extern crate spin;
extern crate core2;
extern crate lockable;
#[cfg(test)]
mod test;
use core::{borrow::Borrow, cmp::min, marker::PhantomData, ops::{Deref, DerefMut, Range}};
use alloc::{boxed::Box, string::String, vec::Vec};
use lockable::Lockable;
use core2::io::{Seek, SeekFrom};
/// Errors that can be returned from I/O operations.
#[derive(Debug)]
pub enum IoError {
/// An input parameter or argument was incorrect or invalid.
InvalidInput,
/// The I/O operation timed out and was canceled.
TimedOut,
/// A miscellaneous error occurred.
Other(&'static str),
}
impl From<IoError> for core2::io::Error {
fn from(io_error: IoError) -> Self {
use core2::io::ErrorKind;
match io_error {
IoError::InvalidInput => ErrorKind::InvalidInput.into(),
IoError::TimedOut => ErrorKind::TimedOut.into(),
IoError::Other(_) => ErrorKind::Other.into(),
}
}
}
impl From<&'static str> for IoError {
fn from(s: &'static str) -> IoError {
IoError::Other(s)
}
}
impl From<IoError> for String {
fn from(e: IoError) -> String {
let s: &'static str = e.into();
String::from(s)
}
}
impl From<IoError> for &'static str {
fn from(io_error: IoError) -> Self {
match io_error {
IoError::InvalidInput => "invalid input",
IoError::TimedOut => "timed out",
IoError::Other(s) => s,
}
}
}
/// A parent trait used to specify the block size (in bytes)
/// of I/O transfers (read and write operations).
/// See its use in [`BlockReader`] and [`BlockWriter`].
pub trait BlockIo {
/// Returns the size in bytes of a single block (i.e., sector),
/// the minimum granularity of I/O transfers.
fn block_size(&self) -> usize;
}
impl<B> BlockIo for Box<B> where B: BlockIo + ?Sized {
fn block_size(&self) -> usize { (**self).block_size() }
}
impl<B> BlockIo for &B where B: BlockIo + ?Sized {
fn block_size(&self) -> usize { (**self).block_size() }
}
impl<B> BlockIo for &mut B where B: BlockIo + ?Sized {
fn block_size(&self) -> usize { (**self).block_size() }
}
/// A trait that represents an I/O stream that has a known length, e.g., a disk drive.
///
/// This trait exists to enable seeking to an offset from the end of the stream.
#[allow(clippy::len_without_is_empty)]
pub trait KnownLength {
/// Returns the length (size in bytes) of this I/O stream or device.
fn len(&self) -> usize;
}
impl<KL> KnownLength for Box<KL> where KL: KnownLength + ?Sized {
fn len(&self) -> usize { (**self).len() }
}
impl<KL> KnownLength for &KL where KL: KnownLength + ?Sized {
fn len(&self) -> usize { (**self).len() }
}
impl<KL> KnownLength for &mut KL where KL: KnownLength + ?Sized {
fn len(&self) -> usize { (**self).len() }
}
/// A trait that represents an I/O stream (e.g., an I/O device) that can be read from in blocks.
/// The block size specifies the minimum granularity of each transfer,
/// as given by the [`BlockIo::block_size()`] function.
///
/// A `BlockReader` is not aware of the current block offset into the stream;
/// thus, each read operation requires a starting offset:
/// the number of blocks from the beginning of the I/O stream at which the read should start.
pub trait BlockReader: BlockIo {
/// Reads blocks of data from this reader into the given `buffer`.
///
/// The number of blocks read is dictated by the length of the given `buffer`.
///
/// # Arguments
/// * `buffer`: the buffer into which data will be read.
/// The length of this buffer must be a multiple of the block size.
/// * `block_offset`: the offset in number of blocks from the beginning of this reader.
///
/// # Return
/// If successful, returns the number of blocks read into the given `buffer`.
/// Otherwise, returns an error.
fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>;
}
impl<R> BlockReader for Box<R> where R: BlockReader + ?Sized {
fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError> {
(**self).read_blocks(buffer, block_offset)
}
}
impl<R> BlockReader for &mut R where R: BlockReader + ?Sized {
fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError> {
(**self).read_blocks(buffer, block_offset)
}
}
/// A trait that represents an I/O stream (e.g., an I/O device) that can be written to in blocks.
/// The block size specifies the minimum granularity of each transfer,
/// as given by the [`BlockIo::block_size()`] function.
///
/// A `BlockWriter` is not aware of the current block offset into the stream;
/// thus, each write operation requires a starting offset:
/// the number of blocks from the beginning of the I/O stream at which the write should start.
pub trait BlockWriter: BlockIo {
/// Writes blocks of data from the given `buffer` to this writer.
///
/// The number of blocks written is dictated by the length of the given `buffer`.
///
/// # Arguments
/// * `buffer`: the buffer from which data will be written.
/// The length of this buffer must be a multiple of the block size.
/// * `block_offset`: the offset in number of blocks from the beginning of this writer.
///
/// # Return
/// If successful, returns the number of blocks written to this writer.
/// Otherwise, returns an error.
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
/// Flushes this entire writer's output stream,
/// ensuring all contents in intermediate buffers are fully written out.
fn flush(&mut self) -> Result<(), IoError>;
}
impl<W> BlockWriter for Box<W> where W: BlockWriter + ?Sized {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError> {
(**self).write_blocks(buffer, block_offset)
}
fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}
impl<W> BlockWriter for &mut W where W: BlockWriter + ?Sized {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError> {
(**self).write_blocks(buffer, block_offset)
}
fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}
/// A trait that represents an I/O stream that can be read from at the granularity of individual bytes,
/// but which does not track the current offset into the stream.
///
/// # `ByteReader` implementation atop `BlockReader`
/// The [`ByteReader`] trait ideally _should be_ auto-implemented for any type
/// that implements the [`BlockReader`] trait,
/// to allow easy byte-wise access to a block-based I/O stream.
/// However, Rust does not allow trait specialization yet, so we cannot do this;
/// instead, use the [`ByteReaderWrapper`] type to accomplish this.
pub trait ByteReader {
/// Reads bytes of data from this reader into the given `buffer`.
///
/// The number of bytes read is dictated by the length of the given `buffer`.
///
/// # Arguments
/// * `buffer`: the buffer into which data will be copied.
/// * `offset`: the offset in bytes from the beginning of this reader
/// where the read operation will begin.
///
/// # Return
/// If successful, returns the number of bytes read into the given `buffer`.
/// Otherwise, returns an error.
fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>;
}
impl<R> ByteReader for Box<R> where R: ByteReader + ?Sized {
fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
(**self).read_at(buffer, offset)
}
}
impl<R> ByteReader for &mut R where R: ByteReader + ?Sized {
fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
(**self).read_at(buffer, offset)
}
}
/// A trait that represents an I/O stream that can be written to,
/// but which does not track the current offset into the stream.
///
/// # `ByteWriter` implementation atop `BlockWriter`
/// The [`ByteWriter`] trait ideally _should be_ auto-implemented for any type
/// that implements both the [`BlockWriter`] **and** [`BlockReader`] traits
/// to allow easy byte-wise access to a block-based I/O stream.
/// However, Rust does not allow trait specialization yet, so we cannot do this;
/// instead, use the [`ByteWriterWrapper`] type to accomplish this.
///
/// It is only possible to implement a byte-wise writer atop a block-wise writer AND reader together,
/// because it is often necessary to read an original block of data from the underlying stream
/// before writing a partial block back to the device.
/// This is required to avoid incorrectly overwriting unrelated byte ranges.
///
/// Note that other implementations of `ByteWriter` may not have this restriction,
/// e.g., when the underlying writer supports writing individual bytes.
pub trait ByteWriter {
/// Writes bytes of data from the given `buffer` to this writer.
///
/// The number of bytes written is dictated by the length of the given `buffer`.
///
/// # Arguments
/// * `buffer`: the buffer from which data will be copied.
/// * `offset`: the offset in number of bytes from the beginning of this writer
/// where the write operation will begin.
///
/// # Return
/// If successful, returns the number of bytes written to this writer.
/// Otherwise, returns an error.
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
/// Flushes this writer's output stream,
/// ensuring all contents in intermediate buffers are fully written out.
fn flush(&mut self) -> Result<(), IoError>;
}
impl<R> ByteWriter for Box<R> where R: ByteWriter + ?Sized {
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError> {
(**self).write_at(buffer, offset)
}
fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}
impl<R> ByteWriter for &mut R where R: ByteWriter + ?Sized {
fn write_at(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError> {
(**self).write_at(buffer, block_offset)
}
fn flush(&mut self) -> Result<(), IoError> { (**self).flush() }
}
/// A wrapper struct that implements a byte-wise reader atop a block-based reader.
///
/// This ideally _should_ be realized via automatic trait implementations,
/// in which all types that implement `BlockReader` also implement `ByteReader`,
/// but we can't do that because Rust currently does not support specialization.
///
/// # Example
/// Use the `From` implementation around a `BlockReader` instance, such as:
/// ```ignore
/// // Assume `storage_dev` implements `BlockReader`
/// let bytes_read = ByteReaderWrapper::from(storage_dev).read_at(...);
/// ```
pub struct ByteReaderWrapper<R: BlockReader>(R);
impl<R> From<R> for ByteReaderWrapper<R> where R: BlockReader {
fn from(block_reader: R) -> Self {
ByteReaderWrapper(block_reader)
}
}
impl<R> ByteReader for ByteReaderWrapper<R> where R: BlockReader {
fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
let mut tmp_block_bytes: Vec<u8> = Vec::new(); // avoid unnecessary allocation
let transfers = blocks_from_bytes(offset .. offset + buffer.len(), self.block_size());
for transfer in transfers.iter().flatten() {
let BlockByteTransfer { byte_range_absolute, block_range, bytes_in_block_range } = transfer;
let buffer_range = byte_range_absolute.start - offset .. byte_range_absolute.end - offset;
// If the transfer is block-aligned on both sides, then we can copy it directly into the `buffer`.
if bytes_in_block_range.start % self.block_size() == 0 && bytes_in_block_range.end % self.block_size() == 0 {
let _blocks_read = self.read_blocks(&mut buffer[buffer_range], block_range.start);
}
// Otherwise, we transfer a single block into a temp buffer and copy a sub-range of those bytes into `buffer`.
else {
if tmp_block_bytes.is_empty() {
tmp_block_bytes = vec![0; self.block_size() * block_range.len()];
}
let _blocks_read = self.read_blocks(&mut tmp_block_bytes, block_range.start)?;
buffer[buffer_range].copy_from_slice(&tmp_block_bytes[bytes_in_block_range.clone()]);
}
}
Ok(buffer.len())
}
}
impl<R> BlockIo for ByteReaderWrapper<R> where R: BlockReader {
delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<R> KnownLength for ByteReaderWrapper<R> where R: KnownLength + BlockReader {
delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<R> BlockReader for ByteReaderWrapper<R> where R: BlockReader {
delegate!{ to self.0 { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
/// A wrapper struct that implements a byte-wise reader and writer
/// atop a block-based reader and writer.
///
/// This ideally _should_ be realized via automatic trait implementations,
/// in which all types that implement `BlockReader + BlockWriter`
/// also implement `ByteReader + ByteWriter`,
/// but we cannot do that because Rust currently does not support specialization.
///
/// # Example
/// Use the `From` implementation around a `BlockReader + BlockWriter` instance, such as:
/// ```ignore
/// // Assume `storage_dev` implements `BlockReader + BlockWriter`
/// let mut reader_writer = ByteReaderWriterWrapper::from(storage_dev);
/// let bytes_read = reader_writer.read_at(...);
/// let bytes_written = reader_writer.write_at(...);
/// ```
pub struct ByteReaderWriterWrapper<RW: BlockReader + BlockWriter>(RW);
impl<RW> From<RW> for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
fn from(block_reader_writer: RW) -> Self {
ByteReaderWriterWrapper(block_reader_writer)
}
}
impl<RW> ByteReader for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError> {
ByteReaderWrapper::from(&mut self.0).read_at(buffer, offset)
}
}
impl<RW> ByteWriter for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError> {
let mut tmp_block_bytes: Vec<u8> = Vec::new(); // avoid unnecessary allocation
let transfers = blocks_from_bytes(offset .. offset + buffer.len(), self.block_size());
for transfer in transfers.iter().flatten() {
let BlockByteTransfer { byte_range_absolute, block_range, bytes_in_block_range } = transfer;
let buffer_range = byte_range_absolute.start - offset .. byte_range_absolute.end - offset;
// If the transfer is block-aligned on both sides, then we can write it directly
// from the `buffer` to the underlying block writer without reading any bytes first.
if bytes_in_block_range.start % self.block_size() == 0 && bytes_in_block_range.end % self.block_size() == 0 {
let _blocks_written = self.write_blocks(&buffer[buffer_range], block_range.start);
}
// Otherwise, to transfer only *part* of a block (a sub-range of its bytes), we must:
// 1. Read that whole block into a temporary buffer,
// 2. Overwrite (copy) the sub-range of new bytes into that temp buffer,
// 3. Write that whole block back to the underlying writer.
else {
if tmp_block_bytes.is_empty() {
tmp_block_bytes = vec![0; self.block_size() * block_range.len()];
}
let _blocks_read = self.read_blocks(&mut tmp_block_bytes, block_range.start)?;
tmp_block_bytes[bytes_in_block_range.clone()].copy_from_slice(&buffer[buffer_range]);
let _blocks_written = self.write_blocks(&tmp_block_bytes[..], block_range.start)?;
}
}
Ok(buffer.len())
}
fn flush(&mut self) -> Result<(), IoError> {
BlockWriter::flush(self)
}
}
impl<RW> BlockIo for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<RW> KnownLength for ByteReaderWriterWrapper<RW> where RW: KnownLength + BlockReader + BlockWriter {
delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<RW> BlockReader for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
delegate!{ to self.0 { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<RW> BlockWriter for ByteReaderWriterWrapper<RW> where RW: BlockReader + BlockWriter {
delegate!{ to self.0 {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
/// A wrapper struct that implements a byte-wise writer
/// atop a block-based reader and writer.
///
/// This is effectively the same struct as [`ByteReaderWriterWrapper`],
/// but it allows *only* writing to the underlying I/O stream, not reading.
///
/// See the [`ByteWriter`] trait docs for an explanation of why both
/// `BlockReader + BlockWriter` are required.
///
/// # Example
/// Use the `From` implementation around a `BlockReader + BlockWriter` instance, such as:
/// ```ignore
/// // Assume `storage_dev` implements `BlockReader + BlockWriter`
/// ByteReaderWriterWrapper::from(storage_dev).write_at(...);
/// ```
pub struct ByteWriterWrapper<RW: BlockReader + BlockWriter>(ByteReaderWriterWrapper<RW>);
impl<RW> From<RW> for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
fn from(block_reader_writer: RW) -> Self {
ByteWriterWrapper(ByteReaderWriterWrapper(block_reader_writer))
}
}
impl<RW> ByteWriter for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
delegate!{ to self.0 { fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>; } }
fn flush(&mut self) -> Result<(), IoError> { ByteWriter::flush(&mut self.0) }
}
impl<RW> BlockIo for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<RW> KnownLength for ByteWriterWrapper<RW> where RW: KnownLength + BlockReader + BlockWriter {
delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<RW> BlockWriter for ByteWriterWrapper<RW> where RW: BlockReader + BlockWriter {
delegate!{ to self.0 { fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>; } }
fn flush(&mut self) -> Result<(), IoError> { BlockWriter::flush(&mut self.0) }
}
/// A readable and writable "stateful" I/O stream that keeps track
/// of its current offset within its internal stateless I/O stream.
///
/// ## Trait implementations
/// * This implements the [`core2::io::Read`] and [`core2::io::Write`] traits for read and write access.
/// * This implements the [`core2::io::Seek`] trait if the underlying I/O stream implements [`KnownLength`].
/// * This also forwards all other I/O-related traits implemented by the underlying I/O stream.
/// * This derefs into the inner `IO` type, via both [`Deref`] and [`DerefMut`].
pub struct ReaderWriter<IO> {
io: IO,
offset: u64,
}
impl<IO> ReaderWriter<IO> where IO: ByteReader + ByteWriter {
/// Creates a new `ReaderWriter` with an initial offset of 0.
pub fn new(io: IO) -> ReaderWriter<IO> {
ReaderWriter { io, offset: 0 }
}
}
impl<IO> Deref for ReaderWriter<IO> {
type Target = IO;
fn deref(&self) -> &Self::Target {
&self.io
}
}
impl<IO> DerefMut for ReaderWriter<IO> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.io
}
}
impl<IO> core2::io::Read for ReaderWriter<IO> where IO: ByteReader {
fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize> {
let bytes_read = self.io.read_at(buf, self.offset as usize)
.map_err(Into::<core2::io::Error>::into)?;
self.offset += bytes_read as u64;
Ok(bytes_read)
}
}
impl<IO> core2::io::Write for ReaderWriter<IO> where IO: ByteWriter {
fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize> {
let bytes_written = self.io.write_at(buf, self.offset as usize)
.map_err(Into::<core2::io::Error>::into)?;
self.offset += bytes_written as u64;
Ok(bytes_written)
}
fn flush(&mut self) -> core2::io::Result<()> {
self.io.flush().map_err(Into::into)
}
}
impl<IO> Seek for ReaderWriter<IO> where IO: KnownLength {
fn seek(&mut self, position: SeekFrom) -> core2::io::Result<u64> {
let (base_pos, offset) = match position {
SeekFrom::Start(n) => {
self.offset = n;
return Ok(n);
}
SeekFrom::Current(n) => (self.offset, n),
SeekFrom::End(n) => (self.io.len() as u64, n),
};
let new_pos = if offset >= 0 {
base_pos.checked_add(offset as u64)
} else {
base_pos.checked_sub((offset.wrapping_neg()) as u64)
};
if let Some(n) = new_pos {
self.offset = n;
Ok(self.offset)
} else {
Err(core2::io::Error::new(
core2::io::ErrorKind::InvalidInput,
"invalid seek to a negative or overflowing position",
))
}
}
}
// Implement (by delegation) various I/O traits for `ReaderWriter`.
impl<IO> BlockIo for ReaderWriter<IO> where IO: BlockIo {
delegate!{ to self.io { fn block_size(&self) -> usize; } }
}
impl<IO> KnownLength for ReaderWriter<IO> where IO: KnownLength {
delegate!{ to self.io { fn len(&self) -> usize; } }
}
impl<IO> BlockReader for ReaderWriter<IO> where IO: BlockReader {
delegate!{ to self.io { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> BlockWriter for ReaderWriter<IO> where IO: BlockWriter {
delegate!{ to self.io {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<IO> ByteReader for ReaderWriter<IO> where IO: ByteReader {
delegate!{ to self.io { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> ByteWriter for ReaderWriter<IO> where IO: ByteWriter {
delegate!{ to self.io {
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
/// A stateful reader that keeps track of its current offset
/// within the internal stateless [`ByteReader`] I/O stream.
///
/// This implements the [`core2::io::Read`] trait for read-only access,
/// as well as the [`core2::io::Seek`] trait if the underlying I/O stream implements [`KnownLength`].
/// It also forwards all other read-only I/O-related traits implemented by the underlying I/O stream.
///
/// Note: this is implemented as a thin wrapper around [`ReaderWriter`].
pub struct Reader<R>(ReaderWriter<R>);
impl<R> Reader<R> where R: ByteReader {
/// Creates a new `Reader` with an initial offset of 0.
pub fn new(reader: R) -> Reader<R> {
Reader(ReaderWriter { io: reader, offset: 0 } )
}
}
// Implement (by delegation) various I/O traits for `Reader`
impl<IO> BlockIo for Reader<IO> where IO: BlockIo {
delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<IO> KnownLength for Reader<IO> where IO: KnownLength {
delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<IO> BlockReader for Reader<IO> where IO: BlockReader {
delegate!{ to self.0 { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> ByteReader for Reader<IO> where IO: ByteReader {
delegate!{ to self.0 { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<IO> core2::io::Read for Reader<IO> where IO: ByteReader {
delegate!{ to self.0 { fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize>; } }
}
impl<IO> Seek for Reader<IO> where IO: KnownLength {
delegate!{ to self.0 { fn seek(&mut self, position: SeekFrom) -> core2::io::Result<u64>; } }
}
/// A stateful writer that keeps track of its current offset
/// within the internal stateless [`ByteWriter`] I/O stream.
///
/// This implements the [`core2::io::Write`] trait for write-only access,
/// as well as the [`core2::io::Seek`] trait if the underlying I/O stream implements [`KnownLength`].
/// It also forwards all other write-only I/O-related traits implemented by the underlying I/O stream.
///
/// Note: this is implemented as a thin wrapper around [`ReaderWriter`].
pub struct Writer<W>(ReaderWriter<W>);
impl<W: ByteWriter> Writer<W> {
/// Creates a new `Writer` with an initial offset of 0.
pub fn new(writer: W) -> Self {
Writer(ReaderWriter { io: writer, offset: 0 } )
}
}
// Implement (by delegation) various I/O traits for `Writer`.
impl<IO> BlockIo for Writer<IO> where IO: BlockIo {
delegate!{ to self.0 { fn block_size(&self) -> usize; } }
}
impl<IO> KnownLength for Writer<IO> where IO: KnownLength {
delegate!{ to self.0 { fn len(&self) -> usize; } }
}
impl<IO> BlockWriter for Writer<IO> where IO: BlockWriter {
delegate!{ to self.0 {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<IO> ByteWriter for Writer<IO> where IO: ByteWriter {
delegate!{ to self.0 {
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<IO> core2::io::Write for Writer<IO> where IO: ByteWriter {
delegate!{ to self.0 { fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize>; } }
fn flush(&mut self) -> core2::io::Result<()> { core2::io::Write::flush(&mut self.0) }
}
impl<IO> Seek for Writer<IO> where IO: KnownLength {
delegate!{ to self.0 { fn seek(&mut self, position: SeekFrom) -> core2::io::Result<u64>; } }
}
/// A struct that holds an IO object wrapped in a [`Lockable`] type `L`,
/// for the purpose of forwarding various IO-related traits through the lock to the `IO` type.
///
/// This allows an IO object inside of a lock type (e.g., `Mutex<IO>`, `Arc<Mutex<IO>>`)
/// to be used as a type that implements some IO-specific trait,
/// such as those listed in the crate-level documentation.
///
/// The following traits are forwarded to the `IO` instance through the `Lockable` wrapper:
/// * [`BlockIo`]
/// * [`KnownLength`]
/// * [`BlockReader`] and [`BlockWriter`]
/// * [`ByteReader`] and [`ByteWriter`]
/// * [`core2::io::Read`], [`core2::io::Write`], and [`core2::io::Seek`]
/// * [`core::fmt::Write`]
///
/// # Usage and Examples
/// The Rust compiler has difficulty inferring all of the types needed in this struct;
/// therefore, you must typically specify at least two types:
/// 1. `L`: the type of the lock itself, which implements `Lockable`.
/// 2. `IO`, the inner type inside of the `Lockable` lock type `L`.
///
/// Here's an example of the minimal types that must be specified:
/// ```no_run
/// // `storage_dev` has the type `Arc<spin::Mutex<dyn Storage Device + Send>>`
/// let storage_dev = storage_manager::storage_devices().next().unwrap();
/// let fail = LockableIo::from(storage_dev); // <-- Error: rustc will complain!
/// let success = LockableIo::<dyn StorageDevice + Send, spin::Mutex<_>, _>::from(storage_dev);
/// let rw = ReaderWriter::new(ByteReaderWriterWrapper::from(success));
/// ```
///
/// You can optionally specify the type `IO` within the `Lockable` type `L`,
/// but Rustc can infer that once you specify the first type `IO`.
/// You can also optionally specify the final parameter `B: Borrow<L>`,
/// but Rustc can also infer that based on your argument to `LockableIo::from()`.
/// You can ask Rustc to infer both of those using the `_` character, as shown above.
#[derive(Debug)]
pub struct LockableIo<'io, IO, L, B>
where IO: 'io + ?Sized,
L: for <'a> Lockable<'a, IO> + ?Sized,
B: Borrow<L>,
{
/// The actual `Borrow`-able type, which obviously must be Sized.
/// This is typically an `Arc` or the `Lockable` type itself, e.g., a `Mutex`.
inner: B,
/// Phew ... this one is nasty.
/// Basically, `_phantom1` ideally *should* be `PhantomData<&'io IO>`.
///
/// However, that causes the `LockableIo` struct to be non-`Sync` no matter what
/// the underlying types of `IO`, `L`, and `B` are, which is unacceptable and wrong.
///
/// We want `LockableIo` to be `Send` and/or `Sync` as long as
/// the underlying type `L` is `Send` and/or `Sync`.
///
/// Thus, we use this weird trait object inside of PhantomData to indicate
/// that what this struct actually holds is effectively a borrow-able object of type `L`,
/// which is anything that implements `Lockable` under the hood,
/// typically something like `Arc<Mutex< IO >>`.
/// Note that the interior types (Guard, GuardMut) do not actually matter,
/// we just need to use the `'io` lifetime and the `IO` type parameter here.
///
/// We also add `Send + Sync` to the inner trait object's bounds,
/// merely to ensure that this `PhantomData` object does not *prevent* the outer `LockableIo`
/// type from auto-implementing `Send` and/or `Sync`.
/// We want the compiler to determine and auto-implement `Send` and/or `Sync`
/// based *solely* on whether `L` is `Send` and/or `Sync`.
///
/// Read more here: <https://users.rust-lang.org/t/looking-for-a-deeper-understanding-of-phantomdata/32477>
_phantom1: PhantomData<dyn Lockable<'io, IO, Guard = (), GuardMut = ()> + Send + Sync>,
/// This can be a regular `PhantomData` because we want the compiler to
/// auto-implement `Send` and/or `Sync` based on whether `B` and `L` are `Send` and/or `Sync`.
_phantom2: PhantomData<L>,
}
impl<'io, IO, L, B> From<B> for LockableIo<'io, IO, L, B>
where IO: 'io + ?Sized,
L: for <'a> Lockable<'a, IO> + ?Sized,
B: Borrow<L>,
{
fn from(lockable_io: B) -> Self {
LockableIo {
inner: lockable_io,
_phantom1: PhantomData,
_phantom2: PhantomData,
}
}
}
impl<'io, IO, L, B> Clone for LockableIo<'io, IO, L, B>
where IO: 'io + ?Sized,
L: for <'a> Lockable<'a, IO> + ?Sized,
B: Borrow<L> + Clone,
{
fn clone(&self) -> Self {
LockableIo {
inner: self.inner.clone(),
_phantom1: PhantomData,
_phantom2: PhantomData,
}
}
}
impl<'io, IO, L, B> Deref for LockableIo<'io, IO, L, B>
where IO: 'io + ?Sized,
L: for <'a> Lockable<'a, IO> + ?Sized,
B: Borrow<L>,
{
type Target = L;
fn deref(&self) -> &L {
self.inner.borrow()
}
}
// Implement (by delegation) various I/O traits for the `LockableIo` wrapper around Mutex<trait>.
impl<'io, IO, L, B> BlockIo for LockableIo<'io, IO, L, B>
where IO: BlockIo + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock() { fn block_size(&self) -> usize; } }
}
impl<'io, IO, L, B> KnownLength for LockableIo<'io, IO, L, B>
where IO: KnownLength + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock() { fn len(&self) -> usize; } }
}
impl<'io, IO, L, B> BlockReader for LockableIo<'io, IO, L, B>
where IO: BlockReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> BlockWriter for LockableIo<'io, IO, L, B>
where IO: BlockWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<'io, IO, L, B> ByteReader for LockableIo<'io, IO, L, B>
where IO: ByteReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> ByteWriter for LockableIo<'io, IO, L, B>
where IO: ByteWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<'io, IO, L, B> core2::io::Read for LockableIo<'io, IO, L, B>
where IO: core2::io::Read + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize>; } }
}
impl<'io, IO, L, B> core2::io::Write for LockableIo<'io, IO, L, B>
where IO: core2::io::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize>;
fn flush(&mut self) -> core2::io::Result<()>;
} }
}
impl<'io, IO, L, B> core2::io::Seek for LockableIo<'io, IO, L, B>
where IO: core2::io::Seek + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn seek(&mut self, position: core2::io::SeekFrom) -> core2::io::Result<u64>; } }
}
impl<'io, IO, L, B> core::fmt::Write for LockableIo<'io, IO, L, B>
where IO: core::fmt::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write_str(&mut self, s: &str) -> core::fmt::Result;
} }
}
// Also implement the same set of I/O traits for an immutable reference `&LockableIo` wrapper,
// because `LockableIo` provides inner mutability.
// Here, we only re-implement the I/O traits with methods that require `&mut self`,
// because traits like `BlockIo` and `KnownLength` already have blanket implementations
// of themselves for `&self`.
impl<'io, IO, L, B> BlockReader for &LockableIo<'io, IO, L, B>
where IO: BlockReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn read_blocks(&mut self, buffer: &mut [u8], block_offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> BlockWriter for &LockableIo<'io, IO, L, B>
where IO: BlockWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write_blocks(&mut self, buffer: &[u8], block_offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<'io, IO, L, B> ByteReader for &LockableIo<'io, IO, L, B>
where IO: ByteReader + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn read_at(&mut self, buffer: &mut [u8], offset: usize) -> Result<usize, IoError>; } }
}
impl<'io, IO, L, B> ByteWriter for &LockableIo<'io, IO, L, B>
where IO: ByteWriter + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write_at(&mut self, buffer: &[u8], offset: usize) -> Result<usize, IoError>;
fn flush(&mut self) -> Result<(), IoError>;
} }
}
impl<'io, IO, L, B> core2::io::Read for &LockableIo<'io, IO, L, B>
where IO: core2::io::Read + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn read(&mut self, buf: &mut [u8]) -> core2::io::Result<usize>; } }
}
impl<'io, IO, L, B> core2::io::Write for &LockableIo<'io, IO, L, B>
where IO: core2::io::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write(&mut self, buf: &[u8]) -> core2::io::Result<usize>;
fn flush(&mut self) -> core2::io::Result<()>;
} }
}
impl<'io, IO, L, B> core2::io::Seek for &LockableIo<'io, IO, L, B>
where IO: core2::io::Seek + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() { fn seek(&mut self, position: core2::io::SeekFrom) -> core2::io::Result<u64>; } }
}
impl<'io, IO, L, B> core::fmt::Write for &LockableIo<'io, IO, L, B>
where IO: core::fmt::Write + 'io + ?Sized, L: for <'a> Lockable<'a, IO> + ?Sized, B: Borrow<L>,
{
delegate!{ to self.lock_mut() {
fn write_str(&mut self, s: &str) -> core::fmt::Result;
} }
}
/// Calculates block-wise bounds for an I/O transfer
/// based on a byte-wise range into a block-wise stream.
///
/// This function returns transfer operations that prioritize using
/// fewer temporary buffers and fewer data copy operations between those buffers
/// instead of prioritizing issuing fewer I/O transfer operations.
/// If you prefer to issue a single I/O transfer to cover the whole range of byte
/// (which may be faster depending on the underlying I/O device),
/// then you should not use this function.
///
/// There are up to three transfer operations that can possibly occur,
/// depending on the alignment of the byte-wise range:
/// 1. A partial single-block transfer of some bytes in the first block,
/// only if the start of `byte_range` is not aligned to `block_size`.
/// 2. A multi-block transfer of contiguous whole blocks,
/// only if `byte_range` spans more than 2 blocks.
/// 3. A partial single-block transfer of some bytes in the last block,
/// only if the end of `byte_range` is not aligned to `block_size`.
///
/// # Example
/// Given a read request for a `byte_range` of `1500..3950` and a `block_size` of `512` bytes,
/// this function will return the following three transfer operations:
/// 1. Read 1 block (block `2`) and transfer the last 36 bytes of that block (`476..512`)
/// into the byte range `1500..1536`.
/// 2. Read 4 blocks (blocks `3..7`) and transfer all of those 2048 bytes
/// into the byte range `1536..3584`.
/// 3. Read 1 block (block `7`) and transfer the first 366 bytes of that block (`0..366`)
/// into the byte range `3584..3950`.
///
/// # Arguments
/// * `byte_range`: the absolute range of bytes where the I/O transfer starts and ends,
/// specified as absolute offsets from the beginning of the block-wise I/O stream.
/// * `block_size`: the size in bytes of each block in the block-wise I/O stream.
///
/// # Return
/// Returns a list of the three above transfer operations,
/// enclosed in `Option`s to convey that not all operations may be necessary.
///
pub fn blocks_from_bytes(
byte_range: Range<usize>,
block_size: usize
) -> [Option<BlockByteTransfer>; 3] {
let mut transfers = [None, None, None];
let mut transfer_idx = 0;
let last_block = byte_range.end / block_size;
let offset_into_last_block = byte_range.end % block_size;
let mut curr_byte = byte_range.start;
while curr_byte < byte_range.end {
let curr_block = curr_byte / block_size;
let offset_into_curr_block = curr_byte % block_size;
// If the curr_byte is block-aligned, then we can do a multi-block transfer.
if offset_into_curr_block == 0 {
// Determine what the last block of this transfer should be.
// Special case: if the last byte is block-aligned, this transfer can cover all remaining bytes.
if offset_into_last_block == 0 {
transfers[transfer_idx] = Some(BlockByteTransfer {
byte_range_absolute: curr_byte .. byte_range.end,
block_range: curr_block .. last_block,
bytes_in_block_range: 0 .. (last_block - curr_block) * block_size,
});
break; // this is the final transfer
}
// Otherwise, if the last byte is NOT block-aligned, this transfer can only extend up until the beginning of the last block
// (through the end of the second-to-last block).
// Unless, that is, it's the final transfer because the end of the byte range is within the current block.
else {
let end_byte = if byte_range.end - curr_byte > block_size {
round_down(byte_range.end, block_size)
} else {
byte_range.end
};
transfers[transfer_idx] = Some(BlockByteTransfer {
byte_range_absolute: curr_byte .. end_byte,
block_range: curr_block .. (end_byte.next_multiple_of(block_size) / block_size),
bytes_in_block_range: 0 .. (end_byte - curr_byte),
});
transfer_idx += 1;
curr_byte = end_byte;
}
}
// Otherwise, if the curr_byte is NOT block-aligned, then we can only do a single-block transfer.
else {
let end_byte = min(byte_range.end, curr_byte.next_multiple_of(block_size));
transfers[transfer_idx] = Some(BlockByteTransfer {
byte_range_absolute: curr_byte .. end_byte,
block_range: curr_block .. curr_block + 1, // just one block
bytes_in_block_range: offset_into_curr_block .. (offset_into_curr_block + (end_byte - curr_byte)),
});
transfer_idx += 1;
curr_byte = end_byte;
}
}
transfers
}
/// Describes an operation for performing byte-wise I/O on a block-based I/O stream.
///
/// See [`blocks_from_bytes()`] for more details.
#[derive(Debug)]
#[cfg_attr(test, derive(PartialEq, Eq))]
pub struct BlockByteTransfer {
/// The byte-wise range specified in absolute bytes from the beginning of an I/O stream.
/// The size of this range should equal the size of `bytes_in_block_range`.
pub byte_range_absolute: Range<usize>,
/// The range of blocks to transfer.
pub block_range: Range<usize>,
/// The range of bytes relative to the blocks specified by `block_range`.
/// The size of this range should equal the size of `byte_range_absolute`.
///
/// For example, a range of `0..10` specifies that the first 10 bytes of the `block_range`
/// are what should be transferred to/from the `byte_range_absolute`.
pub bytes_in_block_range: Range<usize>,
}
/// Rounds the given `value` down to the nearest `multiple`.
#[inline]
fn round_down(value: usize, multiple: usize) -> usize {
(value / multiple) * multiple
}