1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
//! Provides an allocator for physical memory frames.
//! The minimum unit of allocation is a single frame.
//!
//! This is currently a modified and more complex version of the `page_allocator` crate.
//! TODO: extract the common code and create a generic allocator that can be specialized to allocate pages or frames.
//!
//! This also supports early allocation of frames before heap allocation is available,
//! and does so behind the scenes using the same single interface.
//! Early pre-heap allocations are limited to tracking a small number of available chunks (currently 32).
//!
//! Once heap allocation is available, it uses a dynamically-allocated list of frame chunks to track allocations.
//!
//! The core allocation function is [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html),
//! but there are several convenience functions that offer simpler interfaces for general usage.
//!
//! # Notes and Missing Features
//! This allocator only makes one attempt to merge deallocated frames into existing
//! free chunks for de-fragmentation. It does not iteratively merge adjacent chunks in order to
//! maximally combine separate chunks into the biggest single chunk.
//! Instead, free chunks are merged only when they are dropped or when needed to fulfill a specific request.
#![no_std]
#![allow(clippy::blocks_in_if_conditions)]
#![allow(incomplete_features)]
#![feature(adt_const_params)]
extern crate alloc;
#[cfg(test)]
mod test;
mod static_array_rb_tree;
// mod static_array_linked_list;
use core::{borrow::Borrow, cmp::{Ordering, min, max}, fmt, mem, ops::{Deref, DerefMut}};
use intrusive_collections::Bound;
use kernel_config::memory::*;
use log::{error, warn, debug, trace};
use memory_structs::{PhysicalAddress, Frame, FrameRange, MemoryState, PageSize, Page4K, Page2M, Page1G};
use spin::Mutex;
use static_array_rb_tree::*;
use static_assertions::assert_not_impl_any;
const FRAME_4K_SIZE_IN_BYTES: usize = PAGE_SIZE;
// Note: we keep separate lists for "free, general-purpose" areas and "reserved" areas, as it's much faster.
/// The single, system-wide list of free physical memory frames available for general usage.
static FREE_GENERAL_FRAMES_LIST: Mutex<StaticArrayRBTree<FreeFrames>> = Mutex::new(StaticArrayRBTree::empty());
/// The single, system-wide list of free physical memory frames reserved for specific usage.
static FREE_RESERVED_FRAMES_LIST: Mutex<StaticArrayRBTree<FreeFrames>> = Mutex::new(StaticArrayRBTree::empty());
/// The fixed list of all known regions that are available for general use.
/// This does not indicate whether these regions are currently allocated,
/// rather just where they exist and which regions are known to this allocator.
static GENERAL_REGIONS: Mutex<StaticArrayRBTree<PhysicalMemoryRegion>> = Mutex::new(StaticArrayRBTree::empty());
/// The fixed list of all known regions that are reserved for specific purposes.
/// This does not indicate whether these regions are currently allocated,
/// rather just where they exist and which regions are known to this allocator.
static RESERVED_REGIONS: Mutex<StaticArrayRBTree<PhysicalMemoryRegion>> = Mutex::new(StaticArrayRBTree::empty());
/// Initialize the frame allocator with the given list of available and reserved physical memory regions.
///
/// Any regions in either of the lists may overlap, this is checked for and handled properly.
/// Reserved regions take priority -- if a reserved region partially or fully overlaps any part of a free region,
/// that portion will be considered reserved, not free.
///
/// The iterator (`R`) over reserved physical memory regions must be cloneable,
/// as this runs before heap allocation is available, and we may need to iterate over it multiple times.
///
/// ## Return
/// Upon success, this function returns a callback function that allows the caller
/// (the memory subsystem init function) to convert a range of unmapped frames
/// back into an [`UnmappedFrames`] object.
pub fn init<F, R, P>(
free_physical_memory_areas: F,
reserved_physical_memory_areas: R,
) -> Result<fn(FrameRange) -> UnmappedFrames, &'static str>
where P: Borrow<PhysicalMemoryRegion>,
F: IntoIterator<Item = P>,
R: IntoIterator<Item = P> + Clone,
{
if FREE_GENERAL_FRAMES_LIST .lock().len() != 0 ||
FREE_RESERVED_FRAMES_LIST.lock().len() != 0 ||
GENERAL_REGIONS .lock().len() != 0 ||
RESERVED_REGIONS .lock().len() != 0
{
return Err("BUG: Frame allocator was already initialized, cannot be initialized twice.");
}
let mut free_list: [Option<PhysicalMemoryRegion>; 32] = Default::default();
let mut free_list_idx = 0;
// Populate the list of free regions for general-purpose usage.
for area in free_physical_memory_areas.into_iter() {
let area = area.borrow();
// debug!("Frame Allocator: looking to add free physical memory area: {:?}", area);
check_and_add_free_region(
area,
&mut free_list,
&mut free_list_idx,
reserved_physical_memory_areas.clone(),
);
}
let mut reserved_list: [Option<PhysicalMemoryRegion>; 32] = Default::default();
for (i, area) in reserved_physical_memory_areas.into_iter().enumerate() {
reserved_list[i] = Some(PhysicalMemoryRegion {
typ: MemoryRegionType::Reserved,
frames: area.borrow().frames.clone(),
});
}
let mut changed = true;
while changed {
let mut temp_reserved_list: [Option<PhysicalMemoryRegion>; 32] = Default::default();
changed = false;
let mut temp_reserved_list_idx = 0;
for i in 0..temp_reserved_list.len() {
if let Some(mut current) = reserved_list[i].clone() {
for maybe_other in &mut reserved_list[i + 1..] {
if let Some(other) = maybe_other {
if current.overlap(other).is_some() {
current.frames = FrameRange::new(
min(*current.start(), *other.start()),
max(*current.end(), *other.end()),
);
changed = true;
*maybe_other = None;
}
}
}
temp_reserved_list[temp_reserved_list_idx] = Some(current);
temp_reserved_list_idx += 1;
}
}
reserved_list = temp_reserved_list;
}
// Finally, one last sanity check -- ensure no two regions overlap.
let all_areas = free_list[..free_list_idx].iter().flatten()
.chain(reserved_list.iter().flatten());
for (i, elem) in all_areas.clone().enumerate() {
let next_idx = i + 1;
for other in all_areas.clone().skip(next_idx) {
if let Some(overlap) = elem.overlap(other) {
panic!("BUG: frame allocator free list had overlapping ranges: \n \t {:?} and {:?} overlap at {:?}",
elem, other, overlap,
);
}
}
}
// Here, since we're sure we now have a list of regions that don't overlap, we can create lists of Frames objects.
let mut free_list_w_frames: [Option<FreeFrames>; 32] = Default::default();
let mut reserved_list_w_frames: [Option<FreeFrames>; 32] = Default::default();
for (i, elem) in reserved_list.iter().flatten().enumerate() {
reserved_list_w_frames[i] = Some(Frames::new(
MemoryRegionType::Reserved,
elem.frames.clone()
));
}
for (i, elem) in free_list.iter().flatten().enumerate() {
free_list_w_frames[i] = Some(Frames::new(
MemoryRegionType::Free,
elem.frames.clone()
));
}
*FREE_GENERAL_FRAMES_LIST.lock() = StaticArrayRBTree::new(free_list_w_frames);
*FREE_RESERVED_FRAMES_LIST.lock() = StaticArrayRBTree::new(reserved_list_w_frames);
*GENERAL_REGIONS.lock() = StaticArrayRBTree::new(free_list);
*RESERVED_REGIONS.lock() = StaticArrayRBTree::new(reserved_list);
Ok(into_unmapped_frames)
}
/// The main logic of the initialization routine
/// used to populate the list of free frame chunks.
///
/// This function recursively iterates over the given `area` of frames
/// and adds any ranges of frames within that `area` that are not covered by
/// the given list of `reserved_physical_memory_areas`.
fn check_and_add_free_region<P, R>(
area: &FrameRange,
free_list: &mut [Option<PhysicalMemoryRegion>; 32],
free_list_idx: &mut usize,
reserved_physical_memory_areas: R,
)
where P: Borrow<PhysicalMemoryRegion>,
R: IntoIterator<Item = P> + Clone,
{
let mut area = area.clone();
// This will be set to the frame that is the start of the current free region.
let mut current_start = *area.start();
// This will be set to the frame that is the end of the current free region.
let mut current_end = *area.end();
// trace!("looking at sub-area {:X?} to {:X?}", current_start, current_end);
for reserved in reserved_physical_memory_areas.clone().into_iter() {
let reserved = &reserved.borrow().frames;
// trace!("\t Comparing with reserved area {:X?}", reserved);
if reserved.contains(¤t_start) {
// info!("\t\t moving current_start from {:X?} to {:X?}", current_start, *reserved.end() + 1);
current_start = *reserved.end() + 1;
}
if ¤t_start <= reserved.start() && reserved.start() <= ¤t_end {
// Advance up to the frame right before this reserved region started.
// info!("\t\t moving current_end from {:X?} to {:X?}", current_end, min(current_end, *reserved.start() - 1));
current_end = min(current_end, *reserved.start() - 1);
if area.end() <= reserved.end() {
// Optimization here: the rest of the current area is reserved,
// so there's no need to keep iterating over the reserved areas.
// info!("\t !!! skipping the rest of the area");
break;
} else {
let after = FrameRange::new(*reserved.end() + 1, *area.end());
// warn!("moving on to after {:X?}", after);
// Here: the current area extends past this current reserved area,
// so there might be another free area that starts after this reserved area.
check_and_add_free_region(
&after,
free_list,
free_list_idx,
reserved_physical_memory_areas.clone(),
);
area = FrameRange::new(*area.start(), current_end);
// info!("Updating original region after exiting recursive function: {:X?}", area);
}
}
}
let new_area = FrameRange::new(current_start, current_end);
// info!("Adding new area: {:X?}", new_area);
if new_area.size_in_frames() > 0 {
free_list[*free_list_idx] = Some(PhysicalMemoryRegion {
typ: MemoryRegionType::Free,
frames: new_area,
});
*free_list_idx += 1;
}
}
/// `PhysicalMemoryRegion` represents a range of contiguous frames in physical memory for bookkeeping purposes.
/// It does not give access to the underlying frames.
///
/// # Ordering and Equality
///
/// `PhysicalMemoryRegion` implements the `Ord` trait, and its total ordering is ONLY based on
/// its **starting** `Frame`. This is useful so we can store `PhysicalMemoryRegion`s in a sorted collection.
///
/// Similarly, `PhysicalMemoryRegion` implements equality traits, `Eq` and `PartialEq`,
/// both of which are also based ONLY on the **starting** `Frame` of the `PhysicalMemoryRegion`.
/// Thus, comparing two `PhysicalMemoryRegion`s with the `==` or `!=` operators may not work as expected.
/// since it ignores their actual range of frames.
#[derive(Clone, Debug, Eq)]
pub struct PhysicalMemoryRegion {
/// The Frames covered by this region, an inclusive range.
pub frames: FrameRange<Page4K>,
/// The type of this memory region, e.g., whether it's in a free or reserved region.
pub typ: MemoryRegionType,
}
impl PhysicalMemoryRegion {
pub fn new(frames: FrameRange, typ: MemoryRegionType) -> PhysicalMemoryRegion {
PhysicalMemoryRegion { frames, typ }
}
/// Returns a new `PhysicalMemoryRegion` with an empty range of frames.
#[allow(unused)]
const fn empty() -> PhysicalMemoryRegion {
PhysicalMemoryRegion {
typ: MemoryRegionType::Unknown,
frames: FrameRange::empty(),
}
}
}
impl Deref for PhysicalMemoryRegion {
type Target = FrameRange;
fn deref(&self) -> &FrameRange {
&self.frames
}
}
impl Ord for PhysicalMemoryRegion {
fn cmp(&self, other: &Self) -> Ordering {
self.frames.start().cmp(other.frames.start())
}
}
impl PartialOrd for PhysicalMemoryRegion {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for PhysicalMemoryRegion {
fn eq(&self, other: &Self) -> bool {
self.frames.start() == other.frames.start()
}
}
impl Borrow<Frame> for &'_ PhysicalMemoryRegion {
fn borrow(&self) -> &Frame {
self.frames.start()
}
}
/// Types of physical memory. See each variant's documentation.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum MemoryRegionType {
/// Memory that is available for any general purpose.
Free,
/// Memory that is reserved for special use and is only ever allocated from if specifically requested.
/// This includes custom memory regions added by third parties, e.g.,
/// device memory discovered and added by device drivers later during runtime.
Reserved,
/// Memory of an unknown type.
/// This is a default value that acts as a sanity check, because it is invalid
/// to do any real work (e.g., allocation, access) with an unknown memory region.
Unknown,
}
/// A range of contiguous frames in physical memory.
///
/// Each `Frames` object is globally unique, meaning that the owner of a `Frames` object
/// has globally-exclusive access to the range of frames it contains.
///
/// A `Frames` object can be in one of four states:
/// * `Free`: frames are owned by the frame allocator and have not been allocated for any use.
/// * `Allocated`: frames have been removed from the allocator's free list and are owned elsewhere;
/// they can now be used for mapping purposes.
/// * `Mapped`: frames have been (and are currently) mapped by a range of virtual memory pages.
/// * `Unmapped`: frames have been unmapped and can be returned to the frame allocator.
///
/// The drop behavior for a `Frames` object is based on its state:
/// * `Free`: the frames will be added back to the frame allocator's free list.
/// * `Allocated`: the frames will be transitioned into the `Free` state.
/// * `Unmapped`: the frames will be transitioned into the `Allocated` state.
/// * `Mapped`: currently, Theseus does not actually drop mapped `Frames`, but rather they are forgotten
/// when they are mapped by virtual pages, and then re-created in the `Unmapped` state
/// after being unmapped from the page tables.
///
/// As such, one can visualize the `Frames` state diagram as such:
/// ```
/// (Free) <---> (Allocated) --> (Mapped) --> (Unmapped) --> (Allocated) <---> (Free)
/// ```
///
/// # Ordering and Equality
///
/// `Frames` implements the `Ord` trait, and its total ordering is ONLY based on
/// its **starting** `Frame`. This is useful so we can store `Frames` in a sorted collection.
///
/// Similarly, `Frames` implements equality traits, `Eq` and `PartialEq`,
/// both of which are also based ONLY on the **starting** `Frame` of the `Frames`.
/// Thus, comparing two `Frames` with the `==` or `!=` operators may not work as expected.
/// since it ignores their actual range of frames.
///
/// Similarly, `Frames` implements the `Borrow` trait to return a `Frame`,
/// not a `FrameRange`. This is required so we can search for `Frames` in a sorted collection
/// using a `Frame` value.
/// It differs from the behavior of the `Deref` trait which returns a `FrameRange`.
#[derive(Eq)]
pub struct Frames<const S: MemoryState, P: PageSize = Page4K> {
/// The type of this memory chunk, e.g., whether it's in a free or reserved region.
typ: MemoryRegionType,
/// The specific (inclusive) range of frames covered by this memory chunk.
frame_range: FrameRange<P>,
}
/// A type alias for `Frames` in the `Free` state, which only suppports 4K pages.
pub type FreeFrames = Frames<{MemoryState::Free}, Page4K>;
/// A type alias for `Frames` in the `Allocated` state.
#[allow(type_alias_bounds)]
pub type AllocatedFrames<P: PageSize = Page4K> = Frames<{MemoryState::Allocated}, P>;
/// A type alias for `Frames` in the `Mapped` state.
#[allow(type_alias_bounds)]
pub type MappedFrames<P: PageSize = Page4K> = Frames<{MemoryState::Mapped}, P>;
/// A type alias for `Frames` in the `Unmapped` state.
#[allow(type_alias_bounds)]
pub type UnmappedFrames<P: PageSize = Page4K> = Frames<{MemoryState::Unmapped}, P>;
// Frames must not be Cloneable, and it must not expose its inner frames as mutable.
assert_not_impl_any!(FreeFrames: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Allocated}, Page4K>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Allocated}, Page2M>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Allocated}, Page1G>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Mapped}, Page4K>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Mapped}, Page2M>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Mapped}, Page1G>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Unmapped}, Page4K>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Unmapped}, Page2M>: DerefMut, Clone);
assert_not_impl_any!(Frames<{MemoryState::Unmapped}, Page1G>: DerefMut, Clone);
impl FreeFrames {
/// Creates a new `Frames` object in the `Free` state.
///
/// The frame allocator logic is responsible for ensuring that no two `Frames` objects overlap.
pub(crate) fn new(typ: MemoryRegionType, frame_range: FrameRange) -> Self {
Frames { typ, frame_range }
}
/// Consumes this `Frames` in the `Free` state and converts them into the `Allocated` state.
pub fn into_allocated_frames(mut self) -> AllocatedFrames<Page4K> {
let frame_range = mem::take(&mut self.frame_range);
let af = Frames {
typ: self.typ,
frame_range,
};
mem::forget(self); // TODO: is this necessary? we already replaced self with an empty range.
af
}
}
impl<P: PageSize> AllocatedFrames<P> {
/// Consumes this `Frames` in the `Allocated` state and converts them into the `Mapped` state.
/// This should only be called once a `MappedPages` has been created from the `Frames`.
pub fn into_mapped_frames(mut self) -> MappedFrames<P> {
let frame_range = mem::take(&mut self.frame_range);
let mf = Frames {
typ: self.typ,
frame_range,
};
mem::forget(self); // TODO: is this necessary? we already replaced self with an empty range.
mf
}
/// Returns an `AllocatedFrame` if this `AllocatedFrames` object contains only one frame.
///
/// ## Panic
/// Panics if this `AllocatedFrame` contains multiple frames or zero frames.
pub fn as_allocated_frame(&self) -> AllocatedFrame<P> {
assert!(self.size_in_frames() == 1);
AllocatedFrame {
frame: *self.start(),
_phantom: core::marker::PhantomData,
}
}
}
impl UnmappedFrames {
/// Consumes this `Frames` in the `Unmapped` state and converts them into the `Allocated` state.
pub fn into_allocated_frames(mut self) -> AllocatedFrames {
let frame_range = mem::take(&mut self.frame_range);
let af = Frames {
typ: self.typ,
frame_range,
};
mem::forget(self); // TODO: is this necessary? we already replaced self with an empty range.
af
}
}
/// This function is a callback used to convert `UnmappedFrameRange` into `UnmappedFrames`.
///
/// `UnmappedFrames` represents frames that have been unmapped by a page that had
/// previously exclusively mapped them, indicating that no others pages have been mapped
/// to those same frames, and thus, those frames can be safely deallocated.
///
/// This exists to break the cyclic dependency chain between this crate and
/// the `page_table_entry` crate, since `page_table_entry` must depend on types
/// from this crate in order to enforce safety when modifying page table entries.
pub(crate) fn into_unmapped_frames(frame_range: FrameRange<Page4K>) -> UnmappedFrames {
let typ = if contains_any(&RESERVED_REGIONS.lock(), &frame_range) {
MemoryRegionType::Reserved
} else {
MemoryRegionType::Free
};
Frames { typ, frame_range }
}
impl<const S: MemoryState, P: PageSize> Drop for Frames<S, P> {
fn drop(&mut self) {
match S {
// Dropping free frames returns them to the allocator's free list.
MemoryState::Free => {
if self.size_in_frames() == 0 { return; }
let frame_range = mem::take(&mut self.frame_range);
let free_frames: FreeFrames = Frames {
typ: self.typ,
frame_range: frame_range.into_4k_frames(),
};
let mut list = if free_frames.typ == MemoryRegionType::Reserved {
FREE_RESERVED_FRAMES_LIST.lock()
} else {
FREE_GENERAL_FRAMES_LIST.lock()
};
match &mut list.0 {
// For early allocations, just add the deallocated chunk to the free pages list.
Inner::Array(_) => {
if list.insert(free_frames).is_ok() {
return;
} else {
error!("Failed to insert deallocated frames into the list (array). The initial static array should be created with a larger size.");
}
}
// For full-fledged deallocations, determine if we can merge the deallocated frames
// with an existing contiguously-adjacent chunk or if we need to insert a new chunk.
Inner::RBTree(ref mut tree) => {
let mut cursor_mut = tree.lower_bound_mut(Bound::Included(free_frames.start()));
if let Some(next_frames_ref) = cursor_mut.get() {
if *free_frames.end() + 1 == *next_frames_ref.start() {
// extract the next chunk from the list
let mut next_frames = cursor_mut
.remove()
.expect("BUG: couldn't remove next frames from free list in drop handler")
.into_inner();
// trace!("Prepending {:?} onto beg of next {:?}", free_frames, next_frames);
if next_frames.merge(free_frames).is_ok() {
// trace!("newly merged next chunk: {:?}", next_frames);
// now return newly merged chunk into list
cursor_mut.insert_before(Wrapper::new_link(next_frames));
return;
} else {
panic!("BUG: couldn't merge deallocated chunk into next chunk");
}
}
}
if let Some(prev_frames_ref) = cursor_mut.peek_prev().get() {
if *prev_frames_ref.end() + 1 == *free_frames.start() {
// trace!("Appending {:?} onto end of prev {:?}", free_frames, prev_frames.deref());
cursor_mut.move_prev();
if let Some(_prev_frames_ref) = cursor_mut.get() {
// extract the next chunk from the list
let mut prev_frames = cursor_mut
.remove()
.expect("BUG: couldn't remove previous frames from free list in drop handler")
.into_inner();
if prev_frames.merge(free_frames).is_ok() {
// trace!("newly merged prev chunk: {:?}", prev_frames);
// now return newly merged chunk into list
cursor_mut.insert_before(Wrapper::new_link(prev_frames));
return;
} else {
panic!("BUG: couldn't merge deallocated chunk into prev chunk");
}
}
}
}
// trace!("Inserting new chunk for deallocated {:?} ", free_frames);
cursor_mut.insert(Wrapper::new_link(free_frames));
return;
}
}
log::error!("BUG: couldn't insert deallocated {:?} into free frames list", self.frame_range);
}
// Dropping allocated frames converts them into a 4K-sized `FreeFrames`,
// which itself is then dropped.
MemoryState::Allocated => {
// trace!("Converting AllocatedFrames to FreeFrames. Drop handler will be called again {:?}", self.frame_range);
let frame_range = mem::take(&mut self.frame_range);
let _to_drop = Frames::<{MemoryState::Free}, P> {
typ: self.typ,
frame_range,
};
}
// Dropping mapped frames currently should not ever happen.
MemoryState::Mapped => panic!("We should never drop a mapped frame! It should be forgotten instead."),
// Dropping unmapped frames converts them to `AllocatedFrames`,
// which are then also dropped.
MemoryState::Unmapped => {
let frame_range = mem::take(&mut self.frame_range);
let _to_drop = Frames::<{MemoryState::Allocated}, P> {
typ: self.typ,
frame_range,
};
}
}
}
}
impl<'f, P: PageSize> IntoIterator for &'f AllocatedFrames<P> {
type IntoIter = AllocatedFramesIter<'f, P>;
type Item = AllocatedFrame<'f, P>;
fn into_iter(self) -> Self::IntoIter {
AllocatedFramesIter {
_owner: self,
range: self.frame_range.iter(),
}
}
}
/// An iterator over each [`AllocatedFrame`] in a range of [`AllocatedFrames`].
///
/// We must implement our own iterator type here in order to tie the lifetime `'f`
/// of a returned `AllocatedFrame<'f>` type to the lifetime of its containing `AllocatedFrames`.
/// This is because the underlying type of `AllocatedFrames` is a [`FrameRange`],
/// which itself is a [`RangeInclusive`] of [`Frame`]s.
/// Currently, the [`RangeInclusiveIterator`] type creates a clone of the original
/// [`RangeInclusive`] instances rather than borrowing a reference to it.
///
/// [`RangeInclusive`]: range_inclusive::RangeInclusive
pub struct AllocatedFramesIter<'f, P: PageSize> {
_owner: &'f AllocatedFrames<P>,
range: range_inclusive::RangeInclusiveIterator<Frame<P>>,
}
impl<'f, P: PageSize> Iterator for AllocatedFramesIter<'f, P> {
type Item = AllocatedFrame<'f, P>;
fn next(&mut self) -> Option<Self::Item> {
self.range.next().map(|frame|
AllocatedFrame {
frame, _phantom: core::marker::PhantomData,
}
)
}
}
/// A reference to a single frame within a range of `AllocatedFrames`.
///
/// The lifetime of this type is tied to the lifetime of its owning `AllocatedFrames`.
#[derive(Debug)]
pub struct AllocatedFrame<'f, P: PageSize> {
frame: Frame<P>,
_phantom: core::marker::PhantomData<&'f Frame>,
}
impl<'f, P: PageSize> Deref for AllocatedFrame<'f, P> {
type Target = Frame<P>;
fn deref(&self) -> &Self::Target {
&self.frame
}
}
assert_not_impl_any!(AllocatedFrame<Page4K>: DerefMut, Clone);
assert_not_impl_any!(AllocatedFrame<Page2M>: DerefMut, Clone);
assert_not_impl_any!(AllocatedFrame<Page1G>: DerefMut, Clone);
/// The result of splitting a `Frames` object into multiple smaller `Frames` objects.
pub struct SplitFrames<const S: MemoryState, P: PageSize> {
before_start: Option<Frames<S, P>>,
start_to_end: Frames<S, P>,
after_end: Option<Frames<S, P>>,
}
impl<const S: MemoryState, P: PageSize> Frames<S, P> {
pub(crate) fn typ(&self) -> MemoryRegionType {
self.typ
}
/// Returns a new `Frames` with an empty range of frames.
/// Can be used as a placeholder, but will not permit any real usage.
pub const fn empty() -> Frames<S, P> {
Frames {
typ: MemoryRegionType::Unknown,
frame_range: FrameRange::empty(),
}
}
/// Merges the given `other` `Frames` object into this `Frames` object (`self`).
///
/// This function performs no allocation or re-mapping, it exists for convenience and usability purposes.
///
/// The given `other` must be physically contiguous with `self`, i.e., come immediately before or after `self`.
/// That is, either `self.start == other.end + 1` or `self.end + 1 == other.start` must be true.
///
/// If either of those conditions are met, `self` is modified and `Ok(())` is returned,
/// otherwise `Err(other)` is returned.
pub fn merge(&mut self, other: Self) -> Result<(), Self> {
if self.is_empty() || other.is_empty() {
return Err(other);
}
let frames = if *self.start() == *other.end() + 1 {
// `other` comes contiguously before `self`
FrameRange::new(*other.start(), *self.end())
}
else if *self.end() + 1 == *other.start() {
// `self` comes contiguously before `other`
FrameRange::new(*self.start(), *other.end())
}
else {
// non-contiguous
return Err(other);
};
// ensure the now-merged Frames doesn't run its drop handler
mem::forget(other);
self.frame_range = frames;
Ok(())
}
/// Splits up the given `Frames` into multiple smaller `Frames`.
///
/// Returns a `SplitFrames` instance containing three `Frames`:
/// 1. The range of frames in `self` that are before the beginning of `frames_to_extract`.
/// 2. The `Frames` containing the requested range of frames, `frames_to_extract`.
/// 3. The range of frames in `self` that are after the end of `frames_to_extract`.
///
/// If `frames_to_extract` is not contained within `self`, then `self` is returned unchanged within an `Err`.
pub fn split_range(
self,
frames_to_extract: FrameRange<P>
) -> Result<SplitFrames<S, P>, Self> {
if !self.contains_range(&frames_to_extract) {
return Err(self);
}
let start_frame = *frames_to_extract.start();
let start_to_end = frames_to_extract;
let before_start = if start_frame == Frame::<P>::MIN || start_frame == *self.start() {
None
} else {
Some(FrameRange::<P>::new(*self.start(), *start_to_end.start() - 1))
};
let after_end = if *start_to_end.end() == Frame::<P>::MAX || *start_to_end.end() == *self.end() {
None
} else {
Some(FrameRange::<P>::new(*start_to_end.end() + 1, *self.end()))
};
let typ = self.typ;
// ensure the original Frames doesn't run its drop handler and free its frames.
mem::forget(self);
Ok(SplitFrames {
before_start: before_start.map(|frame_range| Frames { typ, frame_range }),
start_to_end: Frames { typ, frame_range: start_to_end },
after_end: after_end.map(|frame_range| Frames { typ, frame_range }),
})
}
/// Splits this `Frames` into two separate `Frames` objects:
/// * `[beginning : at_frame - 1]`
/// * `[at_frame : end]`
///
/// This function follows the behavior of [`core::slice::split_at()`],
/// thus, either one of the returned `Frames` objects may be empty.
/// * If `at_frame == self.start`, the first returned `Frames` object will be empty.
/// * If `at_frame == self.end + 1`, the second returned `Frames` object will be empty.
///
/// Returns an `Err` containing this `Frames` if `at_frame` is otherwise out of bounds, or if `self` was empty.
///
/// [`core::slice::split_at()`]: https://doc.rust-lang.org/core/primitive.slice.html#method.split_at
pub fn split_at(self, at_frame: Frame<P>) -> Result<(Self, Self), Self> {
if self.is_empty() { return Err(self); }
let end_of_first = at_frame - 1;
let (first, second) = if at_frame == *self.start() && at_frame <= *self.end() {
let first = FrameRange::<P>::empty();
let second = FrameRange::<P>::new(at_frame, *self.end());
(first, second)
}
else if at_frame == (*self.end() + 1) && end_of_first >= *self.start() {
let first = FrameRange::<P>::new(*self.start(), *self.end());
let second = FrameRange::<P>::empty();
(first, second)
}
else if at_frame > *self.start() && end_of_first <= *self.end() {
let first = FrameRange::<P>::new(*self.start(), end_of_first);
let second = FrameRange::<P>::new(at_frame, *self.end());
(first, second)
}
else {
return Err(self);
};
let typ = self.typ;
// ensure the original Frames doesn't run its drop handler and free its frames.
mem::forget(self);
Ok((
Frames { typ, frame_range: first },
Frames { typ, frame_range: second },
))
}
}
impl<const S: MemoryState, P: PageSize> Deref for Frames<S, P> {
type Target = FrameRange<P>;
fn deref(&self) -> &Self::Target {
&self.frame_range
}
}
impl<const S: MemoryState, P: PageSize> Ord for Frames<S, P> {
fn cmp(&self, other: &Self) -> Ordering {
self.frame_range.start().cmp(other.frame_range.start())
}
}
impl<const S: MemoryState, P: PageSize> PartialOrd for Frames<S, P> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<const S: MemoryState, P: PageSize> PartialEq for Frames<S, P> {
fn eq(&self, other: &Self) -> bool {
self.frame_range.start() == other.frame_range.start()
}
}
impl<const S: MemoryState, P: PageSize> Borrow<Frame<P>> for &'_ Frames<S, P> {
fn borrow(&self) -> &Frame<P> {
self.frame_range.start()
}
}
impl<const S: MemoryState, P: PageSize> fmt::Debug for Frames<S, P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Frames({:?}, {:?})", self.frame_range, self.typ)
}
}
/// A series of pending actions related to frame allocator bookkeeping,
/// which may result in heap allocation.
///
/// The actions are triggered upon dropping this struct.
/// This struct can be returned from the `allocate_frames()` family of functions
/// in order to allow the caller to precisely control when those actions
/// that may result in heap allocation should occur.
/// Such actions include adding chunks to lists of free frames or frames in use.
///
/// The vast majority of use cases don't care about such precise control,
/// so you can simply drop this struct at any time or ignore it
/// with a `let _ = ...` binding to instantly drop it.
pub struct DeferredAllocAction<'list> {
/// A reference to the list into which we will insert the free general-purpose `Chunk`s.
free_list: &'list Mutex<StaticArrayRBTree<FreeFrames>>,
/// A reference to the list into which we will insert the free "reserved" `Chunk`s.
reserved_list: &'list Mutex<StaticArrayRBTree<FreeFrames>>,
/// A free chunk that needs to be added back to the free list.
free1: FreeFrames,
/// Another free chunk that needs to be added back to the free list.
free2: FreeFrames,
}
impl<'list> DeferredAllocAction<'list> {
fn new<F1, F2>(free1: F1, free2: F2) -> DeferredAllocAction<'list>
where F1: Into<Option<FreeFrames>>,
F2: Into<Option<FreeFrames>>,
{
let free1 = free1.into().unwrap_or_else(Frames::empty);
let free2 = free2.into().unwrap_or_else(Frames::empty);
DeferredAllocAction {
free_list: &FREE_GENERAL_FRAMES_LIST,
reserved_list: &FREE_RESERVED_FRAMES_LIST,
free1,
free2
}
}
}
impl<'list> Drop for DeferredAllocAction<'list> {
fn drop(&mut self) {
let frames1 = mem::replace(&mut self.free1, Frames::empty());
let frames2 = mem::replace(&mut self.free2, Frames::empty());
// Insert all of the chunks, both allocated and free ones, into the list.
if frames1.size_in_frames() > 0 {
match frames1.typ() {
MemoryRegionType::Free => { self.free_list.lock().insert(frames1).unwrap(); }
MemoryRegionType::Reserved => { self.reserved_list.lock().insert(frames1).unwrap(); }
_ => error!("BUG likely: DeferredAllocAction encountered free1 chunk {:?} of a type Unknown", frames1),
}
}
if frames2.size_in_frames() > 0 {
match frames2.typ() {
MemoryRegionType::Free => { self.free_list.lock().insert(frames2).unwrap(); }
MemoryRegionType::Reserved => { self.reserved_list.lock().insert(frames2).unwrap(); }
_ => error!("BUG likely: DeferredAllocAction encountered free2 chunk {:?} of a type Unknown", frames2),
};
}
}
}
/// Possible allocation errors.
#[derive(Debug)]
enum AllocationError {
/// The requested address was not free: it was already allocated.
AddressNotFree(Frame<Page4K>, usize),
/// The requested address was outside the range of this allocator.
AddressNotFound(Frame<Page4K>, usize),
/// The address space was full, or there was not a large-enough chunk
/// or enough remaining chunks that could satisfy the requested allocation size.
OutOfAddressSpace(usize),
/// The starting address was found, but not all successive contiguous frames were available.
ContiguousChunkNotFound(Frame<Page4K>, usize),
}
impl From<AllocationError> for &'static str {
fn from(alloc_err: AllocationError) -> &'static str {
match alloc_err {
AllocationError::AddressNotFree(..) => "requested address was in use",
AllocationError::AddressNotFound(..) => "requested address was outside of this frame allocator's range",
AllocationError::OutOfAddressSpace(..) => "out of physical address space",
AllocationError::ContiguousChunkNotFound(..) => "only some of the requested frames were available",
}
}
}
/// Searches the given `list` for the chunk that contains the range of frames from
/// `requested_frame` to `requested_frame + num_frames`.
fn find_specific_chunk(
list: &mut StaticArrayRBTree<FreeFrames>,
requested_frame: Frame<Page4K>,
num_frames: usize
) -> Result<(AllocatedFrames<Page4K>, DeferredAllocAction<'static>), AllocationError> {
// The end frame is an inclusive bound, hence the -1. Parentheses are needed to avoid overflow.
let requested_end_frame = requested_frame + (num_frames - 1);
match &mut list.0 {
Inner::Array(ref mut arr) => {
for elem in arr.iter_mut() {
if let Some(chunk) = elem {
if requested_frame >= *chunk.start() && requested_end_frame <= *chunk.end() {
// Here: `chunk` was big enough and did contain the requested address.
return allocate_from_chosen_chunk(FrameRange::new(requested_frame, requested_frame + num_frames - 1), ValueRefMut::Array(elem), None);
}
}
}
}
Inner::RBTree(ref mut tree) => {
let mut cursor_mut = tree.upper_bound_mut(Bound::Included(&requested_frame));
if let Some(chunk) = cursor_mut.get().map(|w| w.deref().deref().clone()) {
if chunk.contains(&requested_frame) {
if requested_end_frame <= *chunk.end() {
return allocate_from_chosen_chunk(FrameRange::new(requested_frame, requested_frame + num_frames - 1), ValueRefMut::RBTree(cursor_mut), None);
} else {
// We found the chunk containing the requested address, but it was too small to cover all of the requested frames.
// Let's try to merge the next-highest contiguous chunk to see if those two chunks together
// cover enough frames to fulfill the allocation request.
//
// trace!("Frame allocator: found chunk containing requested address, but it was too small. \
// Attempting to merge multiple chunks during an allocation. \
// Requested address: {:?}, num_frames: {}, chunk: {:?}",
// requested_frame, num_frames, chunk,
// );
let next_contiguous_chunk: Option<FreeFrames> = {
cursor_mut.move_next();// cursor now points to the next chunk
if let Some(next_chunk) = cursor_mut.get().map(|w| w.deref()) {
if *chunk.end() + 1 == *next_chunk.start() {
// Here: next chunk was contiguous with the original chunk.
if requested_end_frame <= *next_chunk.end() {
// trace!("Frame allocator: found suitably-large contiguous next {:?} after initial too-small {:?}", next_chunk, chunk);
let next = cursor_mut.remove().map(|f| f.into_inner());
// after removal, the cursor has been moved to the next chunk, so move it back to the original chunk
cursor_mut.move_prev();
next
} else {
todo!("Frame allocator: found chunk containing requested address, but it was too small. \
Theseus does not yet support merging more than two chunks during an allocation request. \
Requested address: {:?}, num_frames: {}, chunk: {:?}, next_chunk {:?}",
requested_frame, num_frames, chunk, next_chunk
);
// None
}
} else {
trace!("Frame allocator: next {:?} was not contiguously above initial too-small {:?}", next_chunk, chunk);
None
}
} else {
trace!("Frame allocator: couldn't get next chunk above initial too-small {:?}", chunk);
trace!("Requesting new chunk starting at {:?}, num_frames: {}", *chunk.end() + 1, requested_end_frame.number() - chunk.end().number());
return Err(AllocationError::ContiguousChunkNotFound(*chunk.end() + 1, requested_end_frame.number() - chunk.end().number()));
}
};
if let Some(next_chunk) = next_contiguous_chunk {
// We found a suitable chunk that came contiguously after the initial too-small chunk.
// We would like to merge it into the initial chunk with just the reference (since we have a cursor pointing to it already),
// but we can't get a mutable reference to the element the cursor is pointing to.
// So both chunks will be removed and then merged.
return allocate_from_chosen_chunk(FrameRange::new(requested_frame, requested_frame + num_frames - 1), ValueRefMut::RBTree(cursor_mut), Some(next_chunk));
}
}
}
}
}
}
Err(AllocationError::AddressNotFound(requested_frame, num_frames))
}
/// Searches the given `list` for any chunk large enough to hold at least `num_frames`.
fn find_any_chunk(
list: &mut StaticArrayRBTree<FreeFrames>,
num_frames: usize
) -> Result<(AllocatedFrames<Page4K>, DeferredAllocAction<'static>), AllocationError> {
// During the first pass, we ignore designated regions.
match list.0 {
Inner::Array(ref mut arr) => {
for elem in arr.iter_mut() {
if let Some(chunk) = elem {
// Skip chunks that are too-small or in the designated regions.
if chunk.size_in_frames() < num_frames || chunk.typ() != MemoryRegionType::Free {
continue;
}
else {
return allocate_from_chosen_chunk(FrameRange::new(*chunk.start(), *chunk.start() + num_frames - 1), ValueRefMut::Array(elem), None);
}
}
}
}
Inner::RBTree(ref mut tree) => {
// Because we allocate new frames by peeling them off from the beginning part of a chunk,
// it's MUCH faster to start the search for free frames from higher addresses moving down.
// This results in an O(1) allocation time in the general case, until all address ranges are already in use.
let mut cursor = tree.upper_bound_mut(Bound::<&FreeFrames>::Unbounded);
while let Some(chunk) = cursor.get().map(|w| w.deref()) {
if num_frames <= chunk.size_in_frames() && chunk.typ() == MemoryRegionType::Free {
return allocate_from_chosen_chunk(FrameRange::new(*chunk.start(), *chunk.start() + num_frames - 1), ValueRefMut::RBTree(cursor), None);
}
warn!("Frame allocator: inefficient scenario: had to search multiple chunks \
(skipping {:?}) while trying to allocate {} frames at any address.",
chunk, num_frames
);
cursor.move_prev();
}
}
}
error!("frame_allocator: non-reserved chunks are all allocated (requested {} frames). \
TODO: we could attempt to merge free chunks here.", num_frames
);
Err(AllocationError::OutOfAddressSpace(num_frames))
}
/// Removes a `Frames` object from the RBTree.
/// `frames_ref` is basically a wrapper over the cursor which stores the position of the frames.
fn retrieve_frames_from_ref(mut frames_ref: ValueRefMut<FreeFrames>) -> Option<FreeFrames> {
// Remove the chosen chunk from the free frame list.
let removed_val = frames_ref.remove();
match removed_val {
RemovedValue::Array(c) => c,
RemovedValue::RBTree(option_frames) => {
option_frames.map(|c| c.into_inner())
}
}
}
/// The final part of the main allocation routine that optionally merges two contiguous chunks and
/// then splits the resulting chunk into multiple smaller chunks, thereby "allocating" frames from it.
///
/// This function breaks up that chunk into multiple ones and returns an `AllocatedFrames`
/// from (part of) that chunk that has the same range as `frames_to_allocate`.
fn allocate_from_chosen_chunk(
frames_to_allocate: FrameRange<Page4K>,
initial_chunk_ref: ValueRefMut<FreeFrames>,
next_chunk: Option<FreeFrames>,
) -> Result<(AllocatedFrames<Page4K>, DeferredAllocAction<'static>), AllocationError> {
// Remove the initial chunk from the free frame list.
let mut chosen_chunk = retrieve_frames_from_ref(initial_chunk_ref)
.expect("BUG: Failed to retrieve chunk from free list");
// This should always succeed, since we've already checked the conditions for a merge and split.
// We should return the chunks back to the list, but a failure at this point implies a bug in the frame allocator.
if let Some(chunk) = next_chunk {
chosen_chunk.merge(chunk).expect("BUG: Failed to merge adjacent chunks");
}
let SplitFrames { before_start, start_to_end: new_allocation, after_end } = chosen_chunk
.split_range(frames_to_allocate)
.expect("BUG: Failed to split merged chunk");
// TODO: Re-use the allocated wrapper if possible, rather than allocate a new one entirely.
// if let RemovedValue::RBTree(Some(wrapper_adapter)) = _removed_chunk { ... }
Ok((
new_allocation.into_allocated_frames(),
DeferredAllocAction::new(before_start, after_end),
))
}
/// Returns `true` if the given list contains *any* of the given `frames`.
fn contains_any(
list: &StaticArrayRBTree<PhysicalMemoryRegion>,
frames: &FrameRange<Page4K>,
) -> bool {
match &list.0 {
Inner::Array(ref arr) => {
for chunk in arr.iter().flatten() {
if chunk.overlap(frames).is_some() {
return true;
}
}
}
Inner::RBTree(ref tree) => {
let mut cursor = tree.upper_bound(Bound::Included(frames.start()));
while let Some(chunk) = cursor.get() {
if chunk.start() > frames.end() {
// We're iterating in ascending order over a sorted tree, so we can stop
// looking for overlapping regions once we pass the end of `frames`.
break;
}
if chunk.overlap(frames).is_some() {
return true;
}
cursor.move_next();
}
}
}
false
}
/// Adds the given `frames` to the given `regions_list` and `frames_list` as a chunk of reserved frames.
///
/// Returns the range of **new** frames that were added to the lists,
/// which will be a subset of the given input `frames`.
///
/// Currently, this function adds no new frames at all if any frames within the given `frames` list
/// overlap any existing regions at all.
/// TODO: handle partially-overlapping regions by extending existing regions on either end.
fn add_reserved_region_to_lists(
regions_list: &mut StaticArrayRBTree<PhysicalMemoryRegion>,
frames_list: &mut StaticArrayRBTree<FreeFrames>,
frames: FrameRange<Page4K>,
) -> Result<FrameRange<Page4K>, &'static str> {
// first check the regions list for overlaps and proceed only if there are none.
if contains_any(regions_list, &frames) {
error!("Failed to add reserved region {frames:X?} due to overlap with existing regions.");
return Err("Failed to add reserved region that overlapped with existing reserved regions.");
}
// Check whether the reserved region overlaps any existing regions.
match &mut frames_list.0 {
Inner::Array(ref mut arr) => {
for chunk in arr.iter().flatten() {
if let Some(_overlap) = chunk.overlap(&frames) {
// trace!("Failed to add reserved region {:?} due to overlap {:?} with existing chunk {:?}",
// frames, _overlap, chunk
// );
return Err("Failed to add free frames that overlapped with existing frames (array).");
}
}
}
Inner::RBTree(ref mut tree) => {
let mut cursor_mut = tree.upper_bound_mut(Bound::Included(frames.start()));
while let Some(chunk) = cursor_mut.get().map(|w| w.deref()) {
if chunk.start() > frames.end() {
// We're iterating in ascending order over a sorted tree,
// so we can stop looking for overlapping regions once we pass the end of the new frames to add.
break;
}
if let Some(_overlap) = chunk.overlap(&frames) {
// trace!("Failed to add reserved region {:?} due to overlap {:?} with existing chunk {:?}",
// frames, _overlap, chunk
// );
return Err("Failed to add free frames that overlapped with existing frames (RBTree).");
}
cursor_mut.move_next();
}
}
}
regions_list.insert(PhysicalMemoryRegion {
typ: MemoryRegionType::Reserved,
frames: frames.clone(),
}).map_err(|_c| "BUG: Failed to insert non-overlapping physical memory region into reserved regions list.")?;
frames_list.insert(Frames::new(
MemoryRegionType::Reserved,
frames.clone(),
)).map_err(|_c| "BUG: Failed to insert non-overlapping frames into list.")?;
Ok(frames)
}
/// The core frame allocation routine that allocates the given number of physical frames,
/// optionally at the requested starting `PhysicalAddress`.
///
/// This simply reserves a range of frames; it does not perform any memory mapping.
/// Thus, the memory represented by the returned `AllocatedFrames` isn't directly accessible
/// until you map virtual pages to them.
///
/// Allocation is based on a red-black tree and is thus `O(log(n))`.
/// Fragmentation isn't cleaned up until we're out of address space, but that's not really a big deal.
///
/// # Arguments
/// * `requested_paddr`: if `Some`, the returned `AllocatedFrames` will start at the `Frame`
/// containing this `PhysicalAddress`.
/// If `None`, the first available `Frame` range will be used, starting at any random physical address.
/// * `num_frames`: the number of `Frame`s to be allocated.
///
/// # Return
/// If successful, returns a tuple of two items:
/// * the frames that were allocated, and
/// * an opaque struct representing details of bookkeeping-related actions that may cause heap allocation.
/// Those actions are deferred until this returned `DeferredAllocAction` struct object is dropped,
/// allowing the caller (such as the heap implementation itself) to control when heap allocation may occur.
pub fn allocate_frames_deferred(
requested_paddr: Option<PhysicalAddress>,
num_frames: usize,
) -> Result<(AllocatedFrames<Page4K>, DeferredAllocAction<'static>), &'static str> {
if num_frames == 0 {
warn!("frame_allocator: requested an allocation of 0 frames... stupid!");
return Err("cannot allocate zero frames");
}
if let Some(paddr) = requested_paddr {
let start_frame = Frame::containing_address(paddr);
let mut free_reserved_frames_list = FREE_RESERVED_FRAMES_LIST.lock();
// First, attempt to allocate the requested frames from the free reserved list.
let first_allocation_attempt = find_specific_chunk(&mut free_reserved_frames_list, start_frame, num_frames);
let (requested_start_frame, requested_num_frames) = match first_allocation_attempt {
Ok(success) => return Ok(success),
Err(alloc_err) => match alloc_err {
AllocationError::AddressNotFound(..) => {
// If allocation failed, then the requested `start_frame` may be found in the general-purpose list
match find_specific_chunk(&mut FREE_GENERAL_FRAMES_LIST.lock(), start_frame, num_frames) {
Ok(result) => return Ok(result),
Err(AllocationError::AddressNotFound(..)) => (start_frame, num_frames),
Err(AllocationError::ContiguousChunkNotFound(..)) => {
// because we are searching the general frames list, it doesn't matter if part of the chunk was found
// since we only create new reserved frames.
trace!("Only part of the requested allocation was found in the general frames list.");
return Err(From::from(alloc_err));
}
Err(_other) => return Err(From::from(alloc_err)),
}
},
AllocationError::ContiguousChunkNotFound(f, numf) => (f, numf),
_ => return Err(From::from(alloc_err)),
}
};
// If we failed to allocate the requested frames from the general list,
// we can add a new reserved region containing them,
// but ONLY if those frames are *NOT* in the general-purpose region.
let requested_frames = FrameRange::new(requested_start_frame, requested_start_frame + (requested_num_frames - 1));
if !contains_any(&GENERAL_REGIONS.lock(), &requested_frames) {
let _new_reserved_frames = add_reserved_region_to_lists(&mut RESERVED_REGIONS.lock(), &mut free_reserved_frames_list, requested_frames)?;
find_specific_chunk(&mut free_reserved_frames_list, start_frame, num_frames)
}
else {
Err(AllocationError::AddressNotFree(start_frame, num_frames))
}
} else {
find_any_chunk(&mut FREE_GENERAL_FRAMES_LIST.lock(), num_frames)
}.map_err(From::from) // convert from AllocationError to &str
}
/// Similar to [`allocated_frames_deferred()`](fn.allocate_frames_deferred.html),
/// but accepts a size value for the allocated frames in number of bytes instead of number of frames.
///
/// This function still allocates whole frames by rounding up the number of bytes.
pub fn allocate_frames_by_bytes_deferred(
requested_paddr: Option<PhysicalAddress>,
num_bytes: usize,
) -> Result<(AllocatedFrames<Page4K>, DeferredAllocAction<'static>), &'static str> {
let actual_num_bytes = if let Some(paddr) = requested_paddr {
num_bytes + (paddr.value() % FRAME_4K_SIZE_IN_BYTES)
} else {
num_bytes
};
let num_frames = (actual_num_bytes + FRAME_4K_SIZE_IN_BYTES - 1) / FRAME_4K_SIZE_IN_BYTES; // round up
allocate_frames_deferred(requested_paddr, num_frames)
}
/// Allocates the given number of frames with no constraints on the starting physical address.
///
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames(num_frames: usize) -> Option<AllocatedFrames<Page4K>> {
allocate_frames_deferred(None, num_frames)
.map(|(af, _action)| af)
.ok()
}
/// Allocates frames with no constraints on the starting physical address,
/// with a size given by the number of bytes.
///
/// This function still allocates whole frames by rounding up the number of bytes.
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames_by_bytes(num_bytes: usize) -> Option<AllocatedFrames<Page4K>> {
allocate_frames_by_bytes_deferred(None, num_bytes)
.map(|(af, _action)| af)
.ok()
}
/// Allocates frames starting at the given `PhysicalAddress` with a size given in number of bytes.
///
/// This function still allocates whole frames by rounding up the number of bytes.
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames_by_bytes_at(paddr: PhysicalAddress, num_bytes: usize) -> Result<AllocatedFrames<Page4K>, &'static str> {
allocate_frames_by_bytes_deferred(Some(paddr), num_bytes)
.map(|(af, _action)| af)
}
/// Allocates the given number of frames starting at (inclusive of) the frame containing the given `PhysicalAddress`.
///
/// See [`allocate_frames_deferred()`](fn.allocate_frames_deferred.html) for more details.
pub fn allocate_frames_at(paddr: PhysicalAddress, num_frames: usize) -> Result<AllocatedFrames<Page4K>, &'static str> {
allocate_frames_deferred(Some(paddr), num_frames)
.map(|(af, _action)| af)
}
/// An enum that must be returned by the function passed into [`inspect_then_allocate_free_frames()`]
/// in order to define the post-iteration behavior.
pub enum FramesIteratorRequest {
/// Keep iterating to the next chunk of frames.
Next,
/// Stop iterating, and do not allocate anything.
Stop,
/// Stop iterating, and then attempt to allocate the specified frames.
AllocateAt {
requested_frame: Frame<Page4K>,
num_frames: usize,
}
}
/// Iterates over all free frames and invokes the given `func` on each one
/// in order to determine what to do with those frames.
///
/// See [`FramesIteratorRequest`] for more detail.
pub fn inspect_then_allocate_free_frames<F>(
func: &mut F,
) -> Result<Option<AllocatedFrames<Page4K>>, &'static str>
where
F: FnMut(&FreeFrames) -> FramesIteratorRequest
{
let alloc_result;
// This scope ensures we drop the lock on the free frames list
// before doing any deferred allocation actions.
{
let mut general_free_list = FREE_GENERAL_FRAMES_LIST.lock();
let mut frame_alloc_request = None;
for frames in general_free_list.iter() {
match func(frames) {
FramesIteratorRequest::Next => continue,
FramesIteratorRequest::Stop => break,
FramesIteratorRequest::AllocateAt { requested_frame, num_frames } => {
frame_alloc_request = Some((requested_frame, num_frames));
break;
}
}
}
if let Some((requested_frame, num_frames)) = frame_alloc_request {
alloc_result = find_specific_chunk(&mut general_free_list, requested_frame, num_frames);
} else {
return Ok(None);
}
}
alloc_result
.map(|(af, _)| Some(af))
.map_err(From::from)
}
/// Converts the frame allocator from using static memory (a primitive array) to dynamically-allocated memory.
///
/// Call this function once heap allocation is available.
/// Calling this multiple times is unnecessary but harmless, as it will do nothing after the first invocation.
#[doc(hidden)]
pub fn convert_frame_allocator_to_heap_based() {
FREE_GENERAL_FRAMES_LIST.lock().convert_to_heap_allocated();
FREE_RESERVED_FRAMES_LIST.lock().convert_to_heap_allocated();
GENERAL_REGIONS.lock().convert_to_heap_allocated();
RESERVED_REGIONS.lock().convert_to_heap_allocated();
}
/// A debugging function used to dump the full internal state of the frame allocator.
#[doc(hidden)]
pub fn dump_frame_allocator_state() {
debug!("----------------- FREE GENERAL FRAMES ---------------");
FREE_GENERAL_FRAMES_LIST.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
debug!("----------------- FREE RESERVED FRAMES --------------");
FREE_RESERVED_FRAMES_LIST.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
debug!("------------------ GENERAL REGIONS -----------------");
GENERAL_REGIONS.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
debug!("------------------ RESERVED REGIONS -----------------");
RESERVED_REGIONS.lock().iter().for_each(|e| debug!("\t {:?}", e) );
debug!("-----------------------------------------------------");
}