1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
//! DFQ is a decoupled, fault-tolerant, multi-producer single-consumer queue.
//! DFQ is compatible with `no_std` and is interrupt-safe by being entirely lock-free and mostly wait-free.
//!
//! DFQ accepts immutable data items only and does not allow the consumer
//! to immediately remove (pop) or modify the items in the queue.
//! In a transactional fashion, the consumer must call [`mark_completed`]
//! on a queued item to indicate that that item can be safely removed from the queue.
//! Because the original producer that enqueued that item retains a reference to that item,
//! it is then safe for any entity (any producer or the consumer) to remove it from the queue.
//! Currently, the consumer simply removes completed items from the queue on the next occasion
//! of a conumser method like `peek()`.
//!
//! Each producer retains ownership of the data items it queues, and only those items.
//! Thus, a producer is able to query the status of that item's handling by the consumer,
//! to see if it is still on the queue or if something has gone wrong and it has failed.
//! If a failure has occurred, that producer can enqueue that item again,
//! but of course its original position in the queue will be lost.
//!
//! [`mark_completed`]: PeekedData::mark_completed
#![no_std]
#![allow(dead_code)]
#[cfg(test)]
#[macro_use] extern crate std;
extern crate alloc;
use core::sync::atomic::{AtomicBool, Ordering};
use core::ptr;
use core::ops::Deref;
use alloc::sync::Arc;
pub mod mpsc_queue;
/// The actual queue, an opaque type that cannot be used directly.
/// The user must use `DFQueueConsumer` and `DFQueueProducer`.
#[derive(Debug)]
pub struct DFQueue<T> {
/// the actual inner queue
queue: InnerQueue<T>,
/// whether this queue has a consumer (it can only have one!!)
has_consumer: AtomicBool,
}
impl<T> DFQueue<T> {
/// Creates a new DFQueue.
///
/// This object cannot be used directly, you must obtain a producer or consumer to the queue
/// using the functions `into_consumer()` or `obtain_producer()`.
pub fn new() -> DFQueue<T> {
DFQueue {
queue: InnerQueue::new(),
has_consumer: AtomicBool::default(),
}
}
/// Consumes the DFQueue and returns the one and only consumer for this DFQueue.
/// It consumes the DFQueue instance because there is only one consumer allowed per DFQueue.
pub fn into_consumer(self) -> DFQueueConsumer<T> {
debug_assert!(self.has_consumer.load(Ordering::SeqCst) == false,
"DFQueue::into_consumer(): FATAL ERROR: already had a consumer!");
self.has_consumer.store(true, Ordering::SeqCst);
DFQueueConsumer {
qref: Arc::new(self),
}
}
/// Consumes the DFQueue and returns a producer.
/// To obtain another DFQueueProducer for this DFQueue, call `obtain_producer()` on the returned DFQueueProducer.
/// DFQueueProducer does not implement the standard Clone trait, to avoid accidentally cloning it implicity.
pub fn into_producer(self) -> DFQueueProducer<T> {
DFQueueProducer {
qref: Arc::new(self),
}
}
}
/// A consumer that can process (peek into) elements in a DFQueue, but not actually remove them.
/// Do not wrap this in an Arc or Mutex, the queue it is already protected by those on the interior.
///
/// This does not provide a `pop()` method like most queues,
/// because we do not permit the consumer to directly remove items from the queue.
/// Instead, we require that an element can only be removed from the queue once it has been marked complete,
/// providing a sort of transactional behavior.
#[derive(Debug)]
pub struct DFQueueConsumer<T> {
qref: Arc<DFQueue<T>>,
}
impl<T> DFQueueConsumer<T> {
/// Returns a new DFQueueProducer cloned from this consumer instance, since there can be multiple producers.
pub fn obtain_producer(&self) -> DFQueueProducer<T> {
DFQueueProducer {
qref: self.qref.clone(),
}
}
/// Returns the next non-completed element in the queue without actually removing it from the queue,
/// or `None` if the queue is empty or in a temporarily-inconsistent state.
pub fn peek(&self) -> Option<PeekedData<T>> {
let peek_result = self.qref.queue.peek();
match peek_result {
PeekResult::Data(data) => Some(data),
PeekResult::Empty | PeekResult::Inconsistent => None,
}
}
}
/// A producer that can enqueue elements into a DFQueue.
/// Do not wrap this in an Arc or Mutex, the queue it is already protected by those on the interior.
#[derive(Debug)]
pub struct DFQueueProducer<T> {
qref: Arc<DFQueue<T>>,
}
impl<T> DFQueueProducer<T> {
/// Call this to obtain another DFQueueProducer.
/// DFQueueProducer does not implement the standard Clone trait, to avoid accidentally cloning it implicity.
pub fn obtain_producer(&self) -> DFQueueProducer<T> {
DFQueueProducer {
qref: self.qref.clone(),
}
}
/// Returns a DFQueueConsumer for this queue, if it hasn't yet been obtained
/// (either via this function or via `DFQueue::into_consumer()`).
/// To ensure there is only a single DFQueueConsumer, it will return `None` if there is already a `DFQueueConsumer`.
pub fn get_consumer(&self) -> Option<DFQueueConsumer<T>> {
let has_consumer: bool = self.qref.has_consumer.load(Ordering::SeqCst);
match has_consumer {
true => None,
false => {
self.qref.has_consumer.store(true, Ordering::SeqCst);
Some(
DFQueueConsumer {
qref: self.qref.clone(),
}
)
}
}
}
/// Pushes the given `data` onto the queue.
///
/// # Returns
/// Returns a QueuedData instance, an Arc-like reference to the given `data` on the queue.
/// This ensures that the producer can still retain the given `data` if the queue experiences a failure.
pub fn enqueue(&self, data: T) -> QueuedData<T>{
self.qref.queue.push(data)
}
}
// ---------------------------------------------------------
// Below is the modified MPSC queue from Rust's libstd
// ---------------------------------------------------------
use alloc::boxed::Box;
use core::cell::UnsafeCell;
use core::sync::atomic::AtomicPtr;
// /// A result of the `pop` function.
// pub enum PopResult<T> {
// /// Some data has been popped
// Data(QueuedData<T>),
// /// The queue is empty
// Empty,
// /// The queue is in an inconsistent state. Popping data should succeed, but
// /// some pushers have yet to make enough progress in order allow a pop to
// /// succeed. It is recommended that a pop() occur "in the near future" in
// /// order to see if the sender has made progress or not
// Inconsistent,
// }
/// A result of the `peek` function.
pub enum PeekResult<T> {
/// Some data has been successfully peeked
Data(PeekedData<T>),
/// The queue is empty
Empty,
/// The queue is in an inconsistent state. Peeking data should succeed, but
/// some pushers have yet to make enough progress in order allow a peek to
/// succeed. It is recommended that a peek() occur "in the near future" in
/// order to see if the sender has made progress or not.
Inconsistent,
}
struct Node<T> {
/// next points to the node before it, the next one to be popped
next: AtomicPtr<Node<T>>,
/// marking the value as None is how we denote an item is removed from the queue
value: Option<QueuedData<T>>,
// /// prev points to the node ahead of it, the one that was just pushed in front of it
// prev: AtomicPtr<Node<T>>, // we don't need prev
}
/// A special reference type that wraps a data item that has been queued.
/// This is returned to a producer thread (the user of a DFQueueProducer)
/// when enqueuing an item onto the queue so that the producer
/// can retain a reference to it in the case of failure.
#[derive(Debug)]
pub struct QueuedData<T>(Arc<InnerQueuedData<T>>);
impl<T> QueuedData<T> {
/// Not public, a DFQueueProducer must call an enqueue function to receive one of these back.
fn new(data: T) -> QueuedData<T> {
QueuedData(Arc::new(InnerQueuedData{
data: data,
completed: AtomicBool::default(),
}))
}
/// Whether this item has been completed (handled) by the DFQueueConsumer.
/// If an item is completed, it's okay to remove it from the queue (and it will be removed).
pub fn is_completed(&self) -> bool {
self.0.completed.load(Ordering::SeqCst)
}
/// Returns true if this data is still on the queue
///
/// The logic here is as follows: the thread invoking this function holds one reference.
/// Thus, if there is more than one reference, then it means it is on the queue,
/// because the queue also holds a reference to it.
/// That's why we cannot call it internally -- it won't be correct because the original producer thread
/// may also be holding a reference to it, in order for that producer to retain a reference to it.
///
/// Private note: do not call this internally! This is a public API meant for the producer thread to use.
pub fn is_enqueued(&self) -> bool {
Arc::strong_count(&self.0) > 1
}
/// The logic here is as follows: if the item on the queue has only one reference, and has not been completed,
/// that means it is no longer on the queue (the consumer thread crashed or failed).
/// Again, the producer thread invoking this function holds one reference, and if the data is indeed enqueued,
/// that constitutes another reference.
/// If the reference held in the queue isn't there (only one total), and the thread hasn't completed
/// (it may have just been completed in another enqueue call), then something went wrong because it's not complete
/// and not on the queue anymore.
///
/// Private note: do not call this internally! This is a public API meant for the producer thread to use.
pub fn has_failed(&self) -> bool {
// an item that has been completed could not have possibly failed!
(!self.is_completed()) &&
(Arc::strong_count(&self.0) == 1)
}
/// not public, because we want to control when this is cloned
/// so we can keep track of the number of Arc references to the InnerQueuedData.
fn clone(&self) -> QueuedData<T> {
QueuedData(self.0.clone())
}
/// creates a clone of this, marshalled as a PeekedData
/// so that a consumer can access the InnerQueuedData without being able to access
/// all of the QueuedData methods here.
fn as_peeked(&self) -> PeekedData<T> {
PeekedData(self.0.clone())
}
}
impl<T> Deref for QueuedData<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0.data
}
}
/// A wrapper around data in the queue that allows a DFQueueConsumer
/// to access the data and mark the queued item as completed.
/// Automatically Derefs to the inner type `&T`, just like Arc does.
#[derive(Debug)]
pub struct PeekedData<T>(Arc<InnerQueuedData<T>>);
impl<T> PeekedData<T> {
pub fn mark_completed(&self) {
self.0.completed.store(true, Ordering::Release);
}
}
impl<T> Deref for PeekedData<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0.data
}
}
#[derive(Debug)]
struct InnerQueuedData<T> {
/// the actual value contained in the Node
data: T,
/// whether this queued item has been completed
completed: AtomicBool,
}
/// Adapted from Rust's `std::sync::mpsc::Queue`,
/// but modified slightly to forbid pop() in favor of peek().
/// Therefore, we assume it's safe. We also preserve safety by
/// always checking for null pointers before dereferencing.
#[derive(Debug)]
struct InnerQueue<T> {
/// The head is the node that was most recently pushed
head: AtomicPtr<Node<T>>,
/// the tail is a placeholder that exists right after the one that was pushed first.
/// The tail's next pointer points to the next Node to be popped off.
tail: UnsafeCell<*mut Node<T>>,
}
unsafe impl<T: Send> Send for InnerQueue<T> { }
unsafe impl<T: Send> Sync for InnerQueue<T> { }
impl<T> Node<T> {
unsafe fn new(v: Option<QueuedData<T>>) -> *mut Node<T> {
Box::into_raw(Box::new(Node {
next: AtomicPtr::new(ptr::null_mut()),
// prev: AtomicPtr::new(ptr::null_mut()), // we don't need prev
value: v,
}))
}
}
impl<T> InnerQueue<T> {
/// Creates a new queue that is safe to share among multiple producers and one consumer.
/// Its storage semantics are push onto the front, pop off the back.
fn new() -> InnerQueue<T> {
let stub = unsafe { Node::new(None) };
InnerQueue {
head: AtomicPtr::new(stub),
tail: UnsafeCell::new(stub),
}
}
/// Pushes a new value onto the front of this queue.
fn push(&self, t: T) -> QueuedData<T> {
let queued_data = QueuedData::new(t);
unsafe {
let n = Node::new(Some(queued_data.clone())); // Kevin: 'n' will be the new head
let prev = self.head.swap(n, Ordering::AcqRel); // here, prev becomes the original head
// here, prev = old head, and head = n
// (*n).prev.store(prev, Ordering::Release); // KevinBoos: current head (n)'s prev = old head (prev) // we don't need prev
(*prev).next.store(n, Ordering::Release); // prev(old head).next = n
}
queued_data
}
/// Peeks at this queue and returns a reference to the next non-completed item.
///
/// It is possible for this queue to be in an inconsistent state
/// where many pushes have succeeded and completely finished,
/// but a peek cannot return some queued data. This inconsistent state happens
//// when a pusher is pre-empted at an inopportune moment before completing its push.
///
/// An Inconsistent state means that this queue does indeed have data, but
/// it does not currently have access to it at this time.
/// If Inconsistent is returned, try to peek again after a short wait.
fn peek(&self) -> PeekResult<T> {
unsafe {
let mut tail = *self.tail.get();
let mut next = (*tail).next.load(Ordering::Acquire);
while !next.is_null() {
assert!((*next).value.is_some()); // all nodes still in the queue should have Some values (not None)
// if the node has been completed, we no longer want to return it when peeking
if (*next).value.as_ref().unwrap().is_completed() {
// just go ahead and remove the completed node
// to remove a node, we point "self.tail" to it and then remove its value
*self.tail.get() = next;
assert!((*tail).value.is_none());
let _ = (*next).value.take().unwrap(); // remove the value and discard it
let _: Box<Node<T>> = Box::from_raw(tail); // grant ownership of the original tail node and let it fall out of scope
// move to the next node
tail = *self.tail.get();
next = (*tail).next.load(Ordering::Acquire);
continue;
}
assert!((*tail).value.is_none());
assert!((*next).value.is_some());
let ret = (*next).value.as_ref().unwrap().as_peeked();
return PeekResult::Data(ret);
}
if self.head.load(Ordering::Acquire) == tail {PeekResult::Empty} else {PeekResult::Inconsistent}
}
}
}
impl<T> Drop for InnerQueue<T> {
fn drop(&mut self) {
unsafe {
let mut cur = *self.tail.get();
while !cur.is_null() {
let next = (*cur).next.load(Ordering::Relaxed);
let _: Box<Node<T>> = Box::from_raw(cur);
cur = next;
}
}
}
}
// Conditionally compile the module `test` only when the test-suite is run.
#[cfg(test)]
mod test {
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
use std::vec::Vec;
use super::*;
#[test]
// #[should_panic]
fn simple_test() {
let queue: DFQueue<usize> = DFQueue::new();
let mut queue_prod = queue.into_producer();
let mut queue_cons = queue_prod.get_consumer();
assert!(queue_cons.is_some(), "First DFQueueConsumer was None!!!");
// a second call to get_consumer must return None
assert!(queue_prod.get_consumer().is_none(), "Second DFQueueConsumer wasn't None!!");
let queue_cons = queue_cons.unwrap();
let mut queue_prod2 = queue_prod.obtain_producer();
let mut thr_p = thread::spawn( move || {
let original_data: Vec<usize> = vec![1, 2, 3, 4, 5];
for i in 1..20 {
for elem in original_data.iter() {
queue_prod.enqueue(*elem);
}
}
let queued_data = queue_prod.enqueue(256);
println!("prod1: queued_data = {:?}", queued_data);
} );
let mut thr_p2 = thread::spawn( move || {
let original_data: Vec<usize> = vec![10, 11, 12, 13, 14];
for i in 1..20 {
for elem in original_data.iter() {
queue_prod2.enqueue(*elem);
}
}
let queued_data = queue_prod2.enqueue(512);
println!("prod2: queued_data = {:?}", queued_data);
} );
let mut thr_c = thread::spawn( move || {
loop {
let mut val = queue_cons.peek();
if let Some(v) = val {
println!("peeked: {:?}, value={}", v, *v);
v.mark_completed();
}
else {
// println!("\nDumping queue: \n {:?}", queue_cons.qref.queue);
}
}
} );
thr_p.join();
println!("producer 1 done");
thr_p2.join();
println!("producer 2 done");
thr_c.join();
}
#[test]
fn inner_queue_test() {
let nthreads = 16;
let top_range = 10;
let q = InnerQueue::new();
match q.peek() {
PeekResult::Empty => {}
PeekResult::Inconsistent | PeekResult::Data(..) => panic!()
}
let q = Arc::new(q);
let mut threads = vec![];
for id in 0..nthreads {
let q = q.clone();
threads.push(thread::spawn(move|| {
for i in 0..top_range {
let push_val = i + (id * top_range);
println!("{}", push_val);
q.push(push_val);
for y in 0..1 {
let mut a = y + 10;
a += 1;
}
}
}));
}
for t in threads {
t.join().unwrap();
}
// unsafe {
// let mut curr = q.tail.load(Ordering::SeqCst);
// let curr_node = &*curr;
// println!("ail Node: val={:?}, ", curr_node.value);
// // if next_node_ptr.is_null() {
// // print!("next=NULL, ");
// // } else {
// // print!("next={:?}, ", (*next_node_ptr).value);
// // }
// while !(*curr).next.load(Ordering::SeqCst).is_null()
// {
// let curr_node = &*curr;
// let next_node_ptr = (*curr).next.load(Ordering::SeqCst);
// print!("Node: val={:?}, ", curr_node.value);
// if next_node_ptr.is_null() {
// print!("next=NULL, ");
// } else {
// print!("next={:?}, ", (*next_node_ptr).value);
// }
// curr = (*curr).prev.load(Ordering::SeqCst);
// }
// }
let mut i = 0;
// while i < nthreads * top_range {
loop {
let peeked = q.peek();
match peeked {
PeekResult::Empty | PeekResult::Inconsistent => {
// println!("peeked data None");
},
PeekResult::Data(x) => {
// i += 1;
println!("peeked data {}", &*x);
x.mark_completed();
}
}
}
println!("done!");
}
#[test]
fn mpsc_queue_test() {
use super::mpsc_queue::{MpscQueue, PopResult};
let nthreads = 16;
let top_range = 100;
let q = MpscQueue::new();
assert!(q.pop().is_none());
let q = Arc::new(q);
let mut threads = vec![];
for id in 0..nthreads {
let q = q.clone();
threads.push(thread::spawn(move|| {
for i in 0..top_range {
let push_val = i + (id * top_range);
println!("{}", push_val);
q.push(push_val);
for y in 0..1 {
let mut a = y + 10;
a += 1;
}
}
}));
}
for t in threads {
t.join().unwrap();
}
// unsafe {
// let mut curr = q.tail.load(Ordering::SeqCst);
// let curr_node = &*curr;
// println!("ail Node: val={:?}, ", curr_node.value);
// // if next_node_ptr.is_null() {
// // print!("next=NULL, ");
// // } else {
// // print!("next={:?}, ", (*next_node_ptr).value);
// // }
// while !(*curr).next.load(Ordering::SeqCst).is_null()
// {
// let curr_node = &*curr;
// let next_node_ptr = (*curr).next.load(Ordering::SeqCst);
// print!("Node: val={:?}, ", curr_node.value);
// if next_node_ptr.is_null() {
// print!("next=NULL, ");
// } else {
// print!("next={:?}, ", (*next_node_ptr).value);
// }
// curr = (*curr).prev.load(Ordering::SeqCst);
// }
// }
let mut i = 0;
// while i < nthreads * top_range {
loop {
let popped = q.pop();
match popped {
None => {
// println!("popped data None");
},
Some(x) => {
// i += 1;
println!("popped data {}", x);
}
}
}
println!("done!");
}
}