1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
//! Defines types that contain metadata about crates loaded in Theseus and their dependencies.
//!
//! ## Representing dependencies between sections
//! If one section `A` references or uses another section `B`,
//! then we colloquially say that *`A` depends on `B`*.
//!
//! In this scenario, `A` has a [`StrongDependency`] on `B`,
//! and `B` has a [`WeakDependent`] pointing back to `A`.
//!
//! Assuming `A` and `B` are both [`LoadedSection`] objects,
//! then [`A.sections_i_depend_on`] includes a `StrongDependency(B)`
//! and [`B.sections_dependent_on_me`] includes a `WeakDependent(A)`.
//!
//! In this way, the dependency graphs are fully associative,
//! allowing a given [`LoadedSection`] to easily find
//! both its dependencies and its dependents instantly.
//!
//! More importantly, it allows `A` to be dropped before `B`,
//! but not the other way around.
//! This correctly avoids dependency violations by ensuring that a section `B`
//! is never dropped while any other section `A` relies on it.
//!
//! When swapping crates, the [`WeakDependent`]s are actually more useful.
//! For example, if we want to swap the crate that contains section `B1` with a new one `B2`,
//! then we can immediately find all of the section `A`s that depend on `B1`
//! by iterating over `B1.sections_dependent_on_me`.
//! To complete the swap and fully replace `B1` with `B2`,
//! we would do the following (pseudocode):
//! ```
//! for secA in B1.sections_dependent_on_me {
//! change secA's relocation to point to B1
//! add WeakDependent(secA) to B2.sections_dependent_on_me
//! remove StrongDependency(B1) from secA.sections_i_depend_on
//! add StrongDependency(B2) to secA.sections_i_depend_on
//! remove WeakDependent(secA) from B1.sections_dependent_on_me (current iterator)
//! }
//! ```
//!
//! [`A.sections_i_depend_on`]: LoadedSectionInner::sections_i_depend_on
//! [`B.sections_dependent_on_me`]: LoadedSectionInner::sections_dependent_on_me
//!
#![deny(unsafe_op_in_unsafe_fn)]
#![no_std]
extern crate alloc;
use core::{fmt, mem::size_of, ops::Range};
use log::{error, debug, trace};
use spin::{Mutex, RwLock, Once};
use alloc::{
collections::BTreeSet,
format,
string::{
String,
ToString,
},
sync::{Arc, Weak},
vec::Vec,
};
use memory::{MappedPages, VirtualAddress, PteFlags};
use cow_arc::{CowArc, CowWeak};
use fs_node::{FileRef, WeakFileRef};
use hashbrown::HashMap;
use goblin::elf::reloc::*;
pub use str_ref::StrRef;
pub use crate_metadata_serde::{
SectionType,
Shndx,
TEXT_SECTION_NAME,
RODATA_SECTION_NAME,
DATA_SECTION_NAME,
BSS_SECTION_NAME,
TLS_DATA_SECTION_NAME,
TLS_BSS_SECTION_NAME,
GCC_EXCEPT_TABLE_SECTION_NAME,
EH_FRAME_SECTION_NAME,
};
/// A Strong reference to a [`LoadedCrate`].
pub type StrongCrateRef = CowArc<LoadedCrate>;
/// A Weak reference to a [`LoadedCrate`].
pub type WeakCrateRef = CowWeak<LoadedCrate>;
/// A Strong reference ([`Arc`]) to a [`LoadedSection`].
pub type StrongSectionRef = Arc<LoadedSection>;
/// A Weak reference ([`Weak`]) to a [`LoadedSection`].
pub type WeakSectionRef = Weak<LoadedSection>;
/// `.text` sections are read-only and executable.
pub const TEXT_SECTION_FLAGS: PteFlags = PteFlags::from_bits_truncate(
(PteFlags::new().bits() | PteFlags::VALID.bits())
& !PteFlags::NOT_EXECUTABLE.bits() // clear the no-exec bits
);
/// `.rodata` sections are read-only and non-executable.
pub const RODATA_SECTION_FLAGS: PteFlags = PteFlags::from_bits_truncate(
(PteFlags::new().bits() | PteFlags::VALID.bits())
& !PteFlags::WRITABLE.bits()
);
/// `.data` and `.bss` sections are read-write and non-executable.
pub const DATA_BSS_SECTION_FLAGS: PteFlags = PteFlags::from_bits_truncate(
(PteFlags::new().bits() | PteFlags::VALID.bits())
| PteFlags::WRITABLE.bits()
);
// Double-check section flags were defined correctly.
const _: () = assert!(TEXT_SECTION_FLAGS.is_executable() && !TEXT_SECTION_FLAGS.is_writable());
const _: () = assert!(!RODATA_SECTION_FLAGS.is_writable() && !RODATA_SECTION_FLAGS.is_executable());
const _: () = assert!(DATA_BSS_SECTION_FLAGS.is_writable() && !DATA_BSS_SECTION_FLAGS.is_executable());
/// The Theseus Makefile appends prefixes onto bootloader module names,
/// which are separated by the "#" character.
/// For example, "k#my_crate-hash.o".
pub const MODULE_PREFIX_DELIMITER: &str = "#";
/// A crate's name and its hash are separated by "-", i.e., "my_crate-hash".
pub const CRATE_HASH_DELIMITER: &str = "-";
/// A section's demangled name and its hash are separated by "::h",
/// e.g., `"my_crate::section_name::h<hash>"`.
pub const SECTION_HASH_DELIMITER: &str = "::h";
/// The type of a crate, based on its object file naming convention.
/// This naming convention is only used for crate object files
/// that come from **bootloader-provided modules**,
/// which the Theseus makefile assigns at build time.
///
/// See the `from_module_name()` function for more.
#[derive(Debug, PartialEq)]
pub enum CrateType {
Kernel,
Application,
Userspace,
Executable,
}
impl CrateType {
fn first_char(&self) -> &'static str {
match self {
CrateType::Kernel => "k",
CrateType::Application => "a",
CrateType::Userspace => "u",
CrateType::Executable => "e",
}
}
/// Returns the string suffix for use as the name
/// of the crate object file's containing namespace.
pub fn default_namespace_name(&self) -> &'static str {
match self {
CrateType::Kernel => "_kernel",
CrateType::Application => "_applications",
CrateType::Userspace => "_userspace",
CrateType::Executable => "_executables",
}
}
/// Returns a tuple of (CrateType, &str, &str) based on the given `module_name`, in which:
/// 1. the `CrateType` is based on the first character,
/// 2. the first `&str` is the namespace prefix, e.g., `"sse"` in `"k_sse#..."`,
/// 3. the second `&str` is the rest of the module file name after the prefix delimiter `"#"`.
///
/// # Examples
/// ```
/// let result = CrateType::from_module_name("k#my_crate.o");
/// assert_eq!(result, (CrateType::Kernel, "", "my_crate.o") );
///
/// let result = CrateType::from_module_name("ksse#my_crate.o");
/// assert_eq!(result, (CrateType::Kernel, "sse", "my_crate.o") );
/// ```
pub fn from_module_name(module_name: &str) -> Result<(CrateType, &str, &str), &'static str> {
let mut iter = module_name.split(MODULE_PREFIX_DELIMITER);
let prefix = iter.next().ok_or("couldn't parse crate type prefix before delimiter")?;
let crate_name = iter.next().ok_or("couldn't parse crate name after prefix delimiter")?;
if iter.next().is_some() {
return Err("found more than one '#' delimiter in module name");
}
let namespace_prefix = prefix.get(1..).unwrap_or("");
if prefix.starts_with(CrateType::Kernel.first_char()) {
Ok((CrateType::Kernel, namespace_prefix, crate_name))
}
else if prefix.starts_with(CrateType::Application.first_char()) {
Ok((CrateType::Application, namespace_prefix, crate_name))
}
else if prefix.starts_with(CrateType::Userspace.first_char()) {
Ok((CrateType::Userspace, namespace_prefix, crate_name))
}
else if prefix.starts_with(CrateType::Executable.first_char()) {
Ok((CrateType::Executable, namespace_prefix, crate_name))
}
else {
error!("module_name {:?} didn't start with a known CrateType prefix", module_name);
Err("module_name didn't start with a known CrateType prefix")
}
}
}
/// Represents a single crate whose object file has been
/// loaded and linked into at least one `CrateNamespace`.
pub struct LoadedCrate {
/// The name of this crate.
pub crate_name: StrRef,
/// The object file that this crate was loaded from.
pub object_file: FileRef,
/// The file that contains debug symbols for this crate.
/// Debug symbols may exist in several forms:
/// * In the same file as the `object_file` above, i.e., not stripped,
/// * As a separate file that was stripped off from the original object file,
/// * Not at all (no debug symbols available for this crate).
///
/// By default, the constructor for `LoadedCrate` assumes the first form,
/// so it will initialize this to a weak reference to the `LoadedCrate`'s `object_file` field.
/// If that is not the case, then this field should be set differently once the crate is initialized
/// or once a debug symbol file becomes available or requested.
pub debug_symbols_file: WeakFileRef,
/// A map containing all the sections in this crate.
/// In general we're only interested the values (the `LoadedSection`s themselves),
/// but we keep each section's shndx (section header index from its crate's ELF file)
/// as the key because it helps us quickly handle relocations and crate swapping.
pub sections: HashMap<Shndx, StrongSectionRef>,
/// A tuple of:
/// 1. The `MappedPages` that contain sections that are readable and executable, but not writable,
/// i.e., the `.text` sections for this crate,
/// 2. The range of virtual addresses covered by this mapping.
pub text_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
/// A tuple of:
/// 1. The `MappedPages` that contain sections that are read-only, not writable nor executable,
/// i.e., the `.rodata`, `.eh_frame`, and `.gcc_except_table` sections for this crate,
/// 2. The range of virtual addresses covered by this mapping.
pub rodata_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
/// A tuple of:
/// 1. The `MappedPages` that contain sections that are readable and writable but not executable,
/// i.e., the `.data` and `.bss` sections for this crate,
/// 2. The range of virtual addresses covered by this mapping.
pub data_pages: Option<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>)>,
// The fields below are most used to accelerate crate swapping,
// and are not strictly necessary just for normal crate usage and management.
/// The set of global symbols in this crate, including regular ones
/// that are prefixed with the `crate_name` and `no_mangle` symbols that are not.
/// The `Shndx` values in this set are the section index (shndx) numbers,
/// which can be used as the key to look up the actual `LoadedSection` in the `sections` list above.
pub global_sections: BTreeSet<Shndx>,
/// The set of thread-local storage (TLS) symbols in this crate.
/// The `Shndx` values in this set are the section index (shndx) numbers,
/// which can be used as the key to look up the actual `LoadedSection` in the `sections` list above.
pub tls_sections: BTreeSet<Shndx>,
/// The set of CPU-local storage (CLS) symbols in this crate.
pub cls_sections: BTreeSet<Shndx>,
/// The set of `.data` and `.bss` sections in this crate.
/// The `Shndx` values in this set are the section index (shndx) numbers,
/// which can be used as the key to look up the actual `LoadedSection` in the `sections` list above.
pub data_sections: BTreeSet<Shndx>,
/// The set of symbols that this crate's global symbols are reexported under,
/// i.e., they have been added to the enclosing `CrateNamespace`'s symbol map under these names.
///
/// This is primarily used when swapping crates, and it is useful in the following way.
/// If this crate is the new crate that is swapped in to replace another crate,
/// and the caller of the `swap_crates()` function specifies that this crate
/// should expose its symbols with names that match the old crate it's replacing,
/// then this will be populated with the names of corresponding symbols from the old crate that its replacing.
/// For example, if this crate has a symbol `keyboard::init::h456`, and it replaced an older crate
/// that had the symbol `keyboard::init::123`, and `reexport_new_symbols_as_old` was true,
/// then `keyboard::init::h123` will be added to this set.
///
/// When a crate is first loaded, this will be empty by default,
/// because this crate will only have populated its `global_sections` set during loading.
pub reexported_symbols: BTreeSet<StrRef>,
}
impl fmt::Debug for LoadedCrate {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("LoadedCrate")
.field("name", &self.crate_name)
.field("object_file", &self.object_file.try_lock()
.map(|f| f.get_absolute_path())
.unwrap_or_else(|| "<Locked>".to_string())
)
.finish_non_exhaustive()
}
}
impl Drop for LoadedCrate {
fn drop(&mut self) {
trace!("### Dropped LoadedCrate: {}", self.crate_name);
}
}
impl LoadedCrate {
/// Returns the `LoadedSection` of type `SectionType::Text` that matches the requested function name, if it exists in this `LoadedCrate`.
/// Only matches demangled names, e.g., "my_crate::foo".
pub fn get_function_section(&self, func_name: &str) -> Option<&StrongSectionRef> {
self.find_section(|sec|
sec.typ == SectionType::Text &&
sec.name.as_str() == func_name
)
}
/// A convenience function to iterate over only the data (.data or .bss) sections in this crate.
pub fn data_sections_iter(&self) -> impl Iterator<Item = &StrongSectionRef> {
self.data_sections
.iter()
.filter_map(move |shndx| self.sections.get(shndx))
}
/// A convenience function to iterate over only the global (public) sections in this crate.
pub fn global_sections_iter(&self) -> impl Iterator<Item = &StrongSectionRef> {
self.global_sections
.iter()
.filter_map(move |shndx| self.sections.get(shndx))
}
/// Returns the **first** `LoadedSection` that matches the given predicate,
/// i.e., for which the `predicate` closure returns `true`.
///
/// If you need to check for multiple matches, then it's best to iterate
/// over the sections in this crate yourself.
pub fn find_section<F>(&self, predicate: F) -> Option<&StrongSectionRef>
where F: Fn(&LoadedSection) -> bool
{
self.sections.values()
.find(|&sec| predicate(sec))
}
/// Returns the substring of this crate's name that excludes the trailing hash.
/// If there is no hash, then it returns the entire name.
pub fn crate_name_without_hash(&self) -> &str {
self.crate_name.split(CRATE_HASH_DELIMITER)
.next()
.unwrap_or(&self.crate_name)
}
/// Returns this crate name as a symbol prefix, including a trailing "`::`".
/// If there is no hash, then it returns the entire name with a trailing "`::`".
/// # Example
/// * Crate name: "`device_manager-e3769b63863a4030`", return value: "`device_manager::`"
/// * Crate name: "`hello`"` return value: "`hello::`"
pub fn crate_name_as_prefix(&self) -> String {
format!("{}::", self.crate_name_without_hash())
}
/// Currently may contain duplicates!
pub fn crates_dependent_on_me(&self) -> Vec<WeakCrateRef> {
let mut results: Vec<WeakCrateRef> = Vec::new();
for sec in self.sections.values() {
for weak_dep in &sec.inner.read().sections_dependent_on_me {
if let Some(dep_sec) = weak_dep.section.upgrade() {
results.push(dep_sec.parent_crate.clone());
}
}
}
results
}
/// Returns the set of crates that this crate depends on.
/// Only includes direct dependencies "one hop" away,
/// not recursive dependencies "multiples hops" away.
///
/// Currently, the list may include duplicates.
/// The caller is responsible for filtering out duplicates when using the list.
pub fn crates_i_depend_on(&self) -> Vec<WeakCrateRef> {
let mut results: Vec<WeakCrateRef> = Vec::new();
for sec in self.sections.values() {
for strong_dep in &sec.inner.read().sections_i_depend_on {
results.push(strong_dep.section.parent_crate.clone());
}
}
results
}
/// Creates a new copy of this `LoadedCrate`, which is a relatively slow process
/// because it must do the following:
/// * Deep copy all of the MappedPages into completely new memory regions.
/// * Duplicate every section within this crate.
/// * Recalculate every relocation entry to point to the newly-copied sections,
/// which is the most time-consuming component of this function.
///
/// # Notes
/// This is obviously different from cloning a shared Arc reference to this `LoadedCrate`,
/// i.e., a `StrongCrateRef`, which is an instant and cheap operation that does not duplicate the underlying `LoadedCrate`.
///
/// Also, there is currently no way to deep copy a single `LoadedSection` in isolation,
/// because a single section has dependencies on many other sections, i.e., due to relocations,
/// and that would result in weird inconsistencies that violate those dependencies.
/// In addition, multiple `LoadedSection`s share a given `MappedPages` memory range,
/// so they all have to be duplicated at once into a new `MappedPages` range at the crate level.
///
/// This is only available when the `internal_deps` cfg option is set.
#[cfg(internal_deps)]
pub fn deep_copy(
&self,
page_table: &mut memory::PageTable,
) -> Result<StrongCrateRef, &'static str> {
// This closure deep copies the given mapped_pages (mapping them as WRITABLE)
// and recalculates the the range of addresses covered by the new mapping.
let mut deep_copy_mp = |old_mp_range: &(Arc<Mutex<MappedPages>>, Range<VirtualAddress>), flags: PteFlags|
-> Result<(Arc<Mutex<MappedPages>>, Range<VirtualAddress>), &'static str>
{
let old_mp_locked = old_mp_range.0.lock();
let old_start_address = old_mp_range.1.start.value();
let size = old_mp_range.1.end.value() - old_start_address;
let offset = old_start_address - old_mp_locked.start_address().value();
let new_mp = old_mp_range.0.lock().deep_copy(page_table, Some(flags.writable(true)))?;
let new_start_address = new_mp.start_address() + offset;
Ok((Arc::new(Mutex::new(new_mp)), new_start_address .. (new_start_address + size)))
};
// First, deep copy all of the memory regions.
// We initially map the as writable because we'll have to copy things into them
let (new_text_pages_range, new_rodata_pages_range, new_data_pages_range) = {
let new_text_pages = match self.text_pages {
Some(ref tp) => Some(deep_copy_mp(tp, TEXT_SECTION_FLAGS)?),
None => None,
};
let new_rodata_pages = match self.rodata_pages {
Some(ref rp) => Some(deep_copy_mp(rp, RODATA_SECTION_FLAGS)?),
None => None,
};
let new_data_pages = match self.data_pages {
Some(ref dp) => Some(deep_copy_mp(dp, DATA_BSS_SECTION_FLAGS)?),
None => None,
};
(new_text_pages, new_rodata_pages, new_data_pages)
};
let new_text_pages_ref = new_text_pages_range.clone().map(|tup| tup.0);
let new_rodata_pages_ref = new_rodata_pages_range.clone().map(|tup| tup.0);
let new_data_pages_ref = new_data_pages_range.clone().map(|tup| tup.0);
let new_crate = CowArc::new(LoadedCrate {
crate_name: self.crate_name.clone(),
object_file: self.object_file.clone(),
debug_symbols_file: self.debug_symbols_file.clone(),
sections: HashMap::new(),
text_pages: new_text_pages_range,
rodata_pages: new_rodata_pages_range,
data_pages: new_data_pages_range,
global_sections: self.global_sections.clone(),
tls_sections: self.tls_sections.clone(),
data_sections: self.data_sections.clone(),
reexported_symbols: self.reexported_symbols.clone(),
});
let new_crate_weak_ref = CowArc::downgrade(&new_crate);
let mut new_text_pages_locked = new_text_pages_ref .as_ref().map(|tp| tp.lock());
let mut new_rodata_pages_locked = new_rodata_pages_ref.as_ref().map(|rp| rp.lock());
let mut new_data_pages_locked = new_data_pages_ref .as_ref().map(|dp| dp.lock());
// Second, deep copy the entire list of sections and fix things that don't make sense to directly clone:
// 1) The parent_crate reference itself, since we're replacing that with a new one,
// 2) The section's mapped_pages, which will point to a new `MappedPages` object for the newly-copied crate,
// 3) The section's virt_addr, which is based on its new mapped_pages
let mut new_sections: HashMap<Shndx, StrongSectionRef> = HashMap::new();
for (shndx, old_sec) in self.sections.iter() {
let old_sec_inner = old_sec.inner.read();
let new_sec_mapped_pages_offset = old_sec.mapped_pages_offset;
let (new_sec_mapped_pages_ref, new_sec_virt_addr) = match old_sec.typ {
SectionType::Text => (
new_text_pages_ref.clone().ok_or("BUG: missing text pages in newly-copied crate")?,
new_text_pages_locked.as_ref().and_then(|tp| tp.address_at_offset(new_sec_mapped_pages_offset)),
),
SectionType::Rodata
| SectionType::GccExceptTable
| SectionType::TlsBss
| SectionType::TlsData
| SectionType::EhFrame => (
new_rodata_pages_ref.clone().ok_or("BUG: missing rodata pages in newly-copied crate")?,
new_rodata_pages_locked.as_ref().and_then(|rp| rp.address_at_offset(new_sec_mapped_pages_offset)),
),
SectionType::Data
| SectionType::Bss => (
new_data_pages_ref.clone().ok_or("BUG: missing data pages in newly-copied crate")?,
new_data_pages_locked.as_ref().and_then(|dp| dp.address_at_offset(new_sec_mapped_pages_offset)),
),
};
let new_sec_virt_addr = new_sec_virt_addr.ok_or("BUG: couldn't get virt_addr for new section")?;
let new_sec = Arc::new(LoadedSection::with_dependencies(
old_sec.typ, // section type is the same
old_sec.name.clone(), // name is the same
new_sec_mapped_pages_ref, // mapped_pages is different, points to the new duplicated one
new_sec_mapped_pages_offset, // mapped_pages_offset is the same
new_sec_virt_addr, // virt_addr is different, based on the new mapped_pages
old_sec.size, // size is the same
old_sec.global, // globalness is the same
new_crate_weak_ref.clone(), // parent_crate is different, points to the newly-copied crate
old_sec_inner.sections_i_depend_on.clone(), // dependencies are the same, but relocations need to be re-written
Vec::new(), // no sections can possibly depend on this one, since we just created it
old_sec_inner.internal_dependencies.clone() // internal dependencies are the same, but relocations need to be re-written
));
new_sections.insert(*shndx, new_sec);
}
// Now we can go through the list again and fix up the rest of the elements in each section.
// The foreign sections dependencies (sections_i_depend_on) are the same,
// but all relocation entries must be rewritten because the sections' virtual addresses have changed.
for new_sec in new_sections.values() {
let mut new_sec_inner = new_sec.inner.write();
let new_sec_mapped_pages = match new_sec.typ {
SectionType::Text => new_text_pages_locked
.as_mut()
.ok_or("BUG: missing text pages in newly-copied crate")?,
SectionType::Rodata
| SectionType::TlsBss
| SectionType::TlsData
| SectionType::Cls
| SectionType::GccExceptTable
| SectionType::EhFrame => new_rodata_pages_locked
.as_mut()
.ok_or("BUG: missing rodata pages in newly-copied crate")?,
SectionType::Data
| SectionType::Bss => new_data_pages_locked
.as_mut()
.ok_or("BUG: missing data pages in newly-copied crate")?,
};
let new_sec_mapped_pages_offset = new_sec.mapped_pages_offset;
let new_sec_slice: &mut [u8] = new_sec_mapped_pages.as_slice_mut(
0,
new_sec_mapped_pages_offset + new_sec.size,
)?;
// The newly-duplicated crate still depends on the same sections, so we keep those as is,
// but we do need to recalculate those relocations.
for strong_dep in new_sec_inner.sections_i_depend_on.iter_mut() {
// we can skip modifying "absolute" relocations, since those only depend on the source section,
// which we haven't actually changed (we've duplicated the target section here, not the source)
if !strong_dep.relocation.is_absolute() {
let source_sec = &strong_dep.section;
// perform the actual fix by writing the relocation
write_relocation(
strong_dep.relocation,
new_sec_slice,
new_sec_mapped_pages_offset,
source_sec.virt_addr,
true
)?;
// add this new_sec as one of the source sec's weak dependents
source_sec.inner.write().sections_dependent_on_me.push(
WeakDependent {
section: Arc::downgrade(new_sec),
relocation: strong_dep.relocation,
}
);
}
}
// Finally, fix up all of its internal dependencies by recalculating/rewriting their relocations.
// We shouldn't need to actually change the InternalDependency instances themselves
// because they are based on crate-specific section shndx values,
// which are completely safe to clone without needing any fix ups.
for internal_dep in &new_sec.inner.read().internal_dependencies {
let source_sec = new_sections.get(&internal_dep.source_sec_shndx)
.ok_or("Couldn't get new section specified by an internal dependency's source_sec_shndx")?;
// The source and target (new_sec) sections might be the same, so we need to check first
// to ensure that we don't cause deadlock by trying to lock the same section twice.
let source_sec_vaddr = if Arc::ptr_eq(source_sec, new_sec) {
// here: the source_sec and new_sec are the same, so just use the already-locked new_sec
new_sec.virt_addr
} else {
// here: the source_sec and new_sec are different, so we can go ahead and safely lock the source_sec
source_sec.virt_addr
};
write_relocation(
internal_dep.relocation,
new_sec_slice,
new_sec_mapped_pages_offset,
source_sec_vaddr,
true
)?;
}
}
// since we mapped all the new MappedPages as writable, we need to properly remap them.
if let Some(ref mut tp) = new_text_pages_locked {
tp.remap(page_table, TEXT_SECTION_FLAGS)?;
}
if let Some(ref mut rp) = new_rodata_pages_locked {
rp.remap(page_table, RODATA_SECTION_FLAGS)?;
}
// data/bss sections are already mapped properly, since they're writable
// set the new_crate's `sections` list, since we didn't do it earlier
{
let mut new_crate_mut = new_crate.lock_as_mut()
.ok_or("BUG: LoadedCrate::deep_copy(): couldn't get exclusive mutable access to newly-copied crate")?;
new_crate_mut.sections = new_sections;
}
Ok(new_crate)
}
}
/// Returns the default name for the given `SectionType` as a [`StrRef`].
///
/// This is useful for deduplicating section name strings in memory,
/// as the returned `StrRef` will point back to a single instance
/// of that section name string that can be shared across the system.
pub fn section_name_str_ref(section_type: &SectionType) -> StrRef {
static TEXT : Once<StrRef> = Once::new();
static RODATA : Once<StrRef> = Once::new();
static DATA : Once<StrRef> = Once::new();
static BSS : Once<StrRef> = Once::new();
static TLS_DATA : Once<StrRef> = Once::new();
static TLS_BSS : Once<StrRef> = Once::new();
static CLS : Once<StrRef> = Once::new();
static GCC_EXCEPT_TABLE : Once<StrRef> = Once::new();
static EH_FRAME : Once<StrRef> = Once::new();
let instance = match section_type {
SectionType::Text => &TEXT,
SectionType::Rodata => &RODATA,
SectionType::Data => &DATA,
SectionType::Bss => &BSS,
SectionType::TlsData => &TLS_DATA,
SectionType::TlsBss => &TLS_BSS,
SectionType::Cls => &CLS,
SectionType::GccExceptTable => &GCC_EXCEPT_TABLE,
SectionType::EhFrame => &EH_FRAME,
};
instance.call_once(|| StrRef::from(section_type.name())).clone()
}
/// The parts of a `LoadedSection` that may be mutable, i.e.,
/// only the parts that could change after a section is initially loaded and linked.
#[derive(Default)]
#[non_exhaustive]
pub struct LoadedSectionInner {
/// The list of sections in foreign crates that this section depends on, i.e., "my required dependencies".
/// This is kept as a list of strong references because these sections must outlast this section,
/// i.e., those sections cannot be removed/deleted until this one is deleted.
pub sections_i_depend_on: Vec<StrongDependency>,
/// The list of sections in foreign crates that depend on this section, i.e., "my dependents".
/// This is kept as a list of Weak references because we must be able to remove other sections
/// that are dependent upon this one before we remove this one.
/// If we kept strong references to the sections dependent on this one,
/// then we wouldn't be able to remove/delete those sections before deleting this one.
pub sections_dependent_on_me: Vec<WeakDependent>,
/// We keep track of inter-section dependencies within the same crate
/// so that we can faithfully reconstruct the crate section's relocation information.
/// This is necessary for doing a deep copy of the crate in memory,
/// without having to re-parse that crate's ELF file (and requiring the ELF file to still exist).
#[cfg(internal_deps)]
pub internal_dependencies: Vec<InternalDependency>,
}
/// Represents a section that has been loaded and is part of a `LoadedCrate`.
/// The containing `SectionType` enum determines which type of section it is.
#[non_exhaustive]
pub struct LoadedSection {
/// The full string name of this section, a fully-qualified symbol,
/// with the format `<crate>::[<module>::][<struct>::]<fn_name>::<hash>`.
/// The unique hash is generated for each section by the Rust compiler,
/// which can be used as a version identifier.
/// Not all symbols will have a hash, e.g., ones that are not mangled.
///
/// # Examples
/// * `test_lib::MyStruct::new::h843a613894da0c24`
/// * `my_crate::my_function::hbce878984534ceda`
pub name: StrRef,
/// The type of this section, e.g., `.text`, `.rodata`, `.data`, `.bss`, etc.
pub typ: SectionType,
/// Whether or not this section's symbol was exported globally (is public)
pub global: bool,
/// The `MappedPages` that cover this section.
pub mapped_pages: Arc<Mutex<MappedPages>>,
/// The offset into the `mapped_pages` where this section starts
pub mapped_pages_offset: usize,
/// The starting `VirtualAddress` of this section (except for TLS sections).
///
/// For TLS sections, this is *not* a `VirtualAddress`, but rather the offset
/// (from the TLS base) into the TLS area where this section's data exists.
///
/// For all other sections, this is simply a performance optimization that avoids
/// having to calculate its starting virtual address by invoking
/// `self.mapped_pages.address_at_offset(self.mapped_pages_offset)`.
pub virt_addr: VirtualAddress,
/// The size in bytes of this section.
pub size: usize,
/// The `LoadedCrate` object that contains/owns this section
pub parent_crate: WeakCrateRef,
/// The inner contents of a section that could possibly change
/// after the section was initially loaded and linked.
pub inner: RwLock<LoadedSectionInner>,
}
impl LoadedSection {
/// Create a new `LoadedSection`, with an empty `dependencies` list.
#[allow(clippy::too_many_arguments)]
pub fn new(
typ: SectionType,
name: StrRef,
mapped_pages: Arc<Mutex<MappedPages>>,
mapped_pages_offset: usize,
virt_addr: VirtualAddress,
size: usize,
global: bool,
parent_crate: WeakCrateRef,
) -> LoadedSection {
LoadedSection::with_dependencies(
typ,
name,
mapped_pages,
mapped_pages_offset,
virt_addr,
size,
global,
parent_crate,
Default::default(),
Default::default(),
#[cfg(internal_deps)]
Default::default(),
)
}
/// Same as [new()`](#method.new), but uses the given `dependencies` instead of the default empty list.
#[allow(clippy::too_many_arguments)]
pub fn with_dependencies(
typ: SectionType,
name: StrRef,
mapped_pages: Arc<Mutex<MappedPages>>,
mapped_pages_offset: usize,
virt_addr: VirtualAddress,
size: usize,
global: bool,
parent_crate: WeakCrateRef,
sections_i_depend_on: Vec<StrongDependency>,
sections_dependent_on_me: Vec<WeakDependent>,
#[cfg(internal_deps)]
internal_dependencies: Vec<InternalDependency>,
) -> LoadedSection {
LoadedSection {
typ,
name,
mapped_pages,
mapped_pages_offset,
virt_addr,
size,
global,
parent_crate,
inner: RwLock::new(LoadedSectionInner {
sections_i_depend_on,
sections_dependent_on_me,
#[cfg(internal_deps)]
internal_dependencies,
}),
}
}
/// Returns the substring of this section's name that excludes the trailing hash.
///
/// See the identical associated function [`section_name_without_hash()`](#fn.section_name_without_hash.html) for more.
pub fn name_without_hash(&self) -> &str {
Self::section_name_without_hash(self.name.as_str())
}
/// Returns the substring of the given section's name that excludes the trailing hash,
/// but includes the hash delimiter "`::h`".
/// If there is no hash, then it returns the full section name unchanged.
///
/// # Examples
/// name: "`keyboard_new::init::h832430094f98e56b`", return value: "`keyboard_new::init::h`"
/// name: "`start_me`", return value: "`start_me`"
pub fn section_name_without_hash(sec_name: &str) -> &str {
sec_name.rfind(SECTION_HASH_DELIMITER)
.and_then(|end| sec_name.get(0 .. (end + SECTION_HASH_DELIMITER.len())))
.unwrap_or(sec_name)
}
/// Returns the index of the first `WeakDependent` object in this `LoadedSection`'s `sections_dependent_on_me` list
/// in which the section matches the given `matching_section`
pub fn find_weak_dependent(&self, matching_section: &StrongSectionRef) -> Option<usize> {
for (index, weak_dep) in self.inner.read().sections_dependent_on_me.iter().enumerate() {
if let Some(sec) = weak_dep.section.upgrade() {
if Arc::ptr_eq(matching_section, &sec) {
return Some(index);
}
}
}
None
}
/// Copies the actual data contents of this `LoadedSection` to the given `destination_section`.
/// The following conditions must be met:
/// * The two sections must be from different crates (different parent crates),
/// * The two sections must have the same size,
/// * The given `destination_section` must be mapped as writable,
/// basically, it must be a .data or .bss section.
pub fn copy_section_data_to(&self, destination_section: &LoadedSection) -> Result<(), &'static str> {
let mut dest_sec_mapped_pages = destination_section.mapped_pages.lock();
let dest_sec_data: &mut [u8] = dest_sec_mapped_pages.as_slice_mut(destination_section.mapped_pages_offset, destination_section.size)?;
let source_sec_mapped_pages = self.mapped_pages.lock();
let source_sec_data: &[u8] = source_sec_mapped_pages.as_slice(self.mapped_pages_offset, self.size)?;
if dest_sec_data.len() == source_sec_data.len() {
dest_sec_data.copy_from_slice(source_sec_data);
// debug!("Copied data from source section {:?} {:?} ({:#X}) to dest section {:?} {:?} ({:#X})",
// self.typ, self.name, self.size, destination_section.typ, destination_section.name, destination_section.size);
Ok(())
}
else {
error!("This source section {:?}'s size ({:#X}) is different from the destination section {:?}'s size ({:#X})",
self.name, self.size, destination_section.name, destination_section.size);
Err("this source section has a different length than the destination section")
}
}
/// Reinterprets this section's underlying `MappedPages` memory region as an executable function.
///
/// The generic `F` parameter is the function type signature itself, e.g., `fn(String) -> u8`.
///
/// Returns a reference to the function that is formed from the underlying memory region,
/// with a lifetime dependent upon the lifetime of this section.
///
/// # Safety
/// The type signature of `F` must match the type signature of the function.
///
/// # Locking
/// Obtains the lock on this section's `MappedPages` object.
///
/// # Note
/// Ideally, we would use debug information to know the size of the entire function
/// and test whether that fits within the bounds of the memory region, rather than just checking
/// the size of `F`, the function pointer/signature.
/// Without debug information, checking the size is restricted to in-bounds memory safety
/// rather than actual functional correctness.
///
/// # Examples
/// Here's how you might call this function:
/// ```
/// type MyPrintFuncSignature = fn(&str) -> Result<(), &'static str>;
/// let section = mod_mgmt::get_symbol_starting_with("my_crate::print::").upgrade().unwrap();
/// let print_func: &MyPrintFuncSignature = unsafe { section.as_func() }.unwrap();
/// print_func("hello there");
/// ```
///
pub unsafe fn as_func<F>(&self) -> Result<&F, &'static str> {
if false {
debug!("Requested LoadedSection {:#X?} as function {:?}", self, core::any::type_name::<F>());
}
let mp = self.mapped_pages.lock();
// Check flags to make sure these pages are executable (otherwise a page fault would occur when this func is called)
if self.typ != SectionType::Text || !mp.flags().is_executable() {
error!("Requested LoadedSection as function {:?}, but was not an executable text section! (flags: {:?})",
core::any::type_name::<F>(), mp.flags()
);
return Err("as_func(): section was not an executable text section");
}
// Check that the bounds of this entire section fit within its MappedPages
let end = self.mapped_pages_offset + self.size;
if end > mp.size_in_bytes() {
error!("Requested LoadedSection as function {:?}, but section's end offset ({:X?}) was beyond its MappedPages ({:X?})",
core::any::type_name::<F>(), end, mp.size_in_bytes()
);
return Err("requested type and offset would not fit within the MappedPages bounds");
}
// SAFETY: We checked the section type, executability, and size bounds of the
// underlying MappedPages above. The lifetime of the returned function
// reference is tied to this section's lifetime. The caller guarantees
// that the function signature matches.
Ok(unsafe {
core::mem::transmute(
&(mp.start_address().value() + self.mapped_pages_offset)
)
})
}
}
impl fmt::Display for LoadedSection {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"LoadedSection({:?}, typ: {:?}, vaddr: {:#X}, size: {})",
self.name,
self.typ,
self.virt_addr,
self.size,
)
}
}
impl fmt::Debug for LoadedSection {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut dbg = f.debug_struct("LoadedSection");
dbg.field("name", &self.name);
dbg.field("typ", &self.typ);
// Try to get the parent_crate's name
if let Some(parent_crate_name) = self.parent_crate
.upgrade()
.and_then(|cref|
cref.try_lock_as_ref()
.map(|c| c.crate_name.clone())
)
{
dbg.field("parent", &parent_crate_name);
}
else {
dbg.field("parent", &"<locked>");
}
// Add the rest of the typical fields
dbg.field("vaddr", &self.virt_addr)
.field("size", &self.size)
.field("mapped_pages_offset", &self.mapped_pages_offset)
.finish_non_exhaustive()
}
}
/// A representation that the owner `A` of (a `LoadedSection` object containing) this struct
/// depends on the given `section` `B` in this struct.
/// The dependent section `A` is not specifically included here;
/// since it's the owner of this struct, it's implicit that it's the dependent one.
///
/// A dependency is a strong reference to another `LoadedSection` `B`,
/// because that other section `B` shouldn't be removed as long as there are still sections (`A`) that depend on it.
///
/// This is the inverse of the [`WeakDependency`](#struct.WeakDependency) type.
#[derive(Debug, Clone)]
pub struct StrongDependency {
/// A strong reference to the `LoadedSection` `B` that the owner of this struct (`A`) depends on.
pub section: StrongSectionRef,
/// The details of the relocation action that was performed.
pub relocation: RelocationEntry,
}
/// A representation that the `section` `A` in this struct
/// depends on the owner `B` of (the `LoadedSection` object containing) this struct.
/// The target dependency `B` is not specifically included here;
/// it's implicitly the owner of this struct.
///
/// This is a weak reference to another `LoadedSection` `A`,
/// because it is okay to remove a section `A` that depends on the owning section `B` before removing `B`.
/// Otherwise, there would be an infinitely recursive dependency, and neither `A` nor `B` could ever be dropped.
/// This design allows for `A` to be dropped before `B`, because there is no dependency ordering violation there.
///
/// This is the inverse of the [`StrongDependency`](#struct.StrongDependency) type.
#[derive(Debug, Clone)]
pub struct WeakDependent {
/// A weak reference to the `LoadedSection` `A` that depends on the owner `B` of this struct.
pub section: WeakSectionRef,
/// The details of the relocation action that was performed.
pub relocation: RelocationEntry,
}
/// The information necessary to calculate and write a relocation value,
/// based on a source section and a target section, in which a value
/// based on the location of the source section is written somwhere in the target section.
#[derive(Copy, Clone, Eq, PartialEq)]
pub struct RelocationEntry {
/// The type of relocation calculation that is performed
/// to connect the target section to the source section.
pub typ: u32,
/// The value that is added to the source section's address
/// when performing the calculation of the source value that is written to the target section.
pub addend: usize,
/// The offset from the starting virtual address of the target section
/// that specifies where the relocation value should be written.
pub offset: usize,
}
impl fmt::Debug for RelocationEntry {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "RelocationEntry {{ type: {:#X}, addend: {:#X}, offset: {:#X} }}",
self.typ, self.addend, self.offset
)
}
}
impl RelocationEntry {
pub fn from_elf_relocation(rela_entry: &xmas_elf::sections::Rela<u64>) -> RelocationEntry {
RelocationEntry {
typ: rela_entry.get_type(),
addend: rela_entry.get_addend() as usize,
offset: rela_entry.get_offset() as usize,
}
}
/// Returns true if the relocation type results in a relocation calculation
/// in which the source value written into the target section
/// does NOT depend on the target section's address itself in any way
/// (i.e., it only depends on the source section)
pub fn is_absolute(&self) -> bool {
matches!(self.typ, R_X86_64_32 | R_X86_64_64)
}
}
/// A representation that the section that owns this struct
/// has a dependency on the given `source_sec`, *in the same crate*.
/// The dependency itself is specified via the other section's shndx.
#[cfg(internal_deps)]
#[derive(Debug, Clone)]
pub struct InternalDependency {
pub relocation: RelocationEntry,
pub source_sec_shndx: Shndx,
}
#[cfg(internal_deps)]
impl InternalDependency {
pub fn new(relocation: RelocationEntry, source_sec_shndx: Shndx) -> InternalDependency {
InternalDependency {
relocation, source_sec_shndx
}
}
}
/// Actually write the value of a relocation entry.
///
/// # Arguments
/// * `relocation_entry`: the relocation entry from the ELF file that specifies the details
/// of the relocation action to perform.
/// * `target_sec_slice`: a byte slice holding the entire contents of the target section,
/// i.e., the section where the relocation data will be written to.
/// * `target_sec_offset`: the offset into `target_sec_slice` where the target section's contents begin.
/// * `source_sec_vaddr`: the `VirtualAddress` of the source section of the relocation, i.e.,
/// the section that the `target_sec` depends on and "points" to.
/// * `verbose_log`: whether to output verbose logging information about this relocation action.
///
/// # Notes
/// * There is a great, succint table of relocation types here:
/// <https://docs.rs/goblin/0.6.0/goblin/elf/reloc/index.html>.
/// * aarch64-specific relocation docs here:
/// <https://github.com/ARM-software/abi-aa/blob/main/aaelf64/aaelf64.rst#relocation-types>.
pub fn write_relocation(
relocation_entry: RelocationEntry,
target_sec_slice: &mut [u8],
target_sec_offset: usize,
source_sec_vaddr: VirtualAddress,
verbose_log: bool
) -> Result<(), &'static str> {
// Calculate exactly where we should write the relocation data to.
let target_sec_offset = target_sec_offset + relocation_entry.offset;
write_relocation_arch(
relocation_entry,
target_sec_slice,
target_sec_offset,
source_sec_vaddr,
verbose_log,
)
}
/// An internal function for handling unsupported relocation types.
#[inline(always)]
fn unsupported(relocation_type: u32) -> Result<(), &'static str> {
error!("found unsupported relocation type {}\n \
--> Compile with 'relocation-model=static', 'code-model=large', and 'tls-model=local-exec'",
relocation_type
);
Err("found unsupported relocation type. \
--> Compile with 'relocation-model=static', 'code-model=large', and 'tls-model=local-exec'",
)
}
/// Implement x86_64-specific relocation calculations.
#[cfg(target_arch = "x86_64")]
#[inline(always)]
fn write_relocation_arch(
relocation_entry: RelocationEntry,
target_sec_slice: &mut [u8],
target_sec_offset: usize,
source_sec_vaddr: VirtualAddress,
verbose_log: bool
) -> Result<(), &'static str> {
match relocation_entry.typ {
R_X86_64_32 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = source_sec_vaddr.value().wrapping_add(relocation_entry.addend) as u32;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
}
R_X86_64_64 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u64>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = source_sec_vaddr.value().wrapping_add(relocation_entry.addend) as u64;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
}
R_X86_64_PC32
| R_X86_64_PLT32 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = source_sec_vaddr.value().wrapping_add(relocation_entry.addend).wrapping_sub(target_ref.as_ptr() as usize) as u32;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
}
R_X86_64_PC64 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u64>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = source_sec_vaddr.value().wrapping_add(relocation_entry.addend).wrapping_sub(target_ref.as_ptr() as usize);
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
}
R_X86_64_TPOFF32 => {
use core::convert::TryFrom;
let target_range = target_sec_offset .. (target_sec_offset + size_of::<i32>());
let target_ref = &mut target_sec_slice[target_range];
// Here we treat the `source_sec_vaddr` value as a signed value
// by casting its bit value directly, i.e., `usize as isize`.
let offset_val = source_sec_vaddr.value() as isize;
// Now we must check that the signed `offset_val` fits in `i32`
let source_val = i32::try_from(offset_val)
.map_err(|_| "BUG: TLS relocation (R_X86_64_TPOFF32) source section value (TLS offset) cannot fit in a `i32`")?;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
}
// R_X86_64_GOTTPOFF => {
// // 32-bit signed PC-relative offset to the GOT entry for the IE (Initial Exec(utable) TLS model))
// debug!("R_X86_64_GOTTPOFF: {:#X?}", relocation_entry);
// debug!("R_X86_64_GOTTPOFF: target: {:#X}, source: {:#X}", target_sec_slice.as_ptr() as usize + target_sec_offset, source_sec_vaddr);
// unimplemented!()
// }
// R_X86_64_GOTPCREL => {
// unimplemented!(); // if we stop using the large code model, we need to create a Global Offset Table
// }
other => return unsupported(other),
}
Ok(())
}
/// Implement aarch64-specific relocation calculations.
#[cfg(target_arch = "aarch64")]
#[inline(always)]
fn write_relocation_arch(
relocation_entry: RelocationEntry,
target_sec_slice: &mut [u8],
target_sec_offset: usize,
source_sec_vaddr: VirtualAddress,
verbose_log: bool
) -> Result<(), &'static str> {
use core::convert::TryInto;
const TWO: isize = 2;
const RANGE_16_BIT_SIGNED: Range<isize> = -TWO.pow(15) .. TWO.pow(16);
const RANGE_32_BIT_SIGNED: Range<isize> = -TWO.pow(31) .. TWO.pow(32);
const RANGE_12_BIT_UNSIGNED: Range<isize> = 0 .. TWO.pow(12);
const RANGE_16_BIT_UNSIGNED: Range<isize> = 0 .. TWO.pow(16);
const RANGE_24_BIT_UNSIGNED: Range<isize> = 0 .. TWO.pow(24);
const RANGE_32_BIT_UNSIGNED: Range<isize> = 0 .. TWO.pow(32);
const RANGE_48_BIT_UNSIGNED: Range<isize> = 0 .. TWO.pow(48);
#[allow(clippy::needless_late_init)]
let overflow_check: Option<(usize, Range<isize>)>;
match relocation_entry.typ {
R_AARCH64_ABS64 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u64>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend);
let source_val = source_val_usize as u64;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
overflow_check = None;
}
R_AARCH64_ABS32 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend);
let source_val = source_val_usize as u32;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
overflow_check = Some((source_val_usize, RANGE_32_BIT_SIGNED));
}
R_AARCH64_ABS16 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u16>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend);
let source_val = source_val_usize as u16;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
overflow_check = Some((source_val_usize, RANGE_16_BIT_SIGNED));
}
R_AARCH64_PREL64 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u64>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend).wrapping_sub(target_ref.as_ptr() as usize);
let source_val = source_val_usize as u64;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
overflow_check = None;
}
R_AARCH64_PREL32 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend).wrapping_sub(target_ref.as_ptr() as usize);
let source_val = source_val_usize as u32;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
overflow_check = Some((source_val_usize, RANGE_32_BIT_SIGNED));
}
R_AARCH64_PREL16 => {
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u16>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend).wrapping_sub(target_ref.as_ptr() as usize);
let source_val = source_val_usize as u16;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, source_sec_vaddr); }
target_ref.copy_from_slice(&source_val.to_ne_bytes());
overflow_check = Some((source_val_usize, RANGE_16_BIT_SIGNED));
}
// These relocation types are for data move instructions that access data
// using 64-bit unsigned offset values, which exist when using the "large" code-model.
R_AARCH64_MOVW_UABS_G0
| R_AARCH64_MOVW_UABS_G0_NC
| R_AARCH64_MOVW_UABS_G1
| R_AARCH64_MOVW_UABS_G1_NC
| R_AARCH64_MOVW_UABS_G2
| R_AARCH64_MOVW_UABS_G2_NC
| R_AARCH64_MOVW_UABS_G3 => {
// The immediate field occupies 16 bits [20:5] in the MOV* series of instructions
// that these relocation types apply to.
// See: <https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/MOVK--Move-wide-with-keep->
const IMMEDIATE_FIELD_SHIFT: u8 = 5;
const IMMEDIATE_FIELD_MASK: u32 = 0xFFFF;
let (source_value_shift, overflow_range): (usize, _) = match relocation_entry.typ {
// Set immediate value to bits [15:0] of the source_val --> 0-bit right shift.
R_AARCH64_MOVW_UABS_G0 => (0, Some(RANGE_16_BIT_UNSIGNED)),
R_AARCH64_MOVW_UABS_G0_NC => (0, None),
// Set immediate value to bits [31:16] of the source_val --> 16-bit right shift.
R_AARCH64_MOVW_UABS_G1 => (16, Some(RANGE_32_BIT_UNSIGNED)),
R_AARCH64_MOVW_UABS_G1_NC => (16, None),
// Set immediate value to bits [47:32] of the source_val --> 32-bit right shift.
R_AARCH64_MOVW_UABS_G2 => (32, Some(RANGE_48_BIT_UNSIGNED)),
R_AARCH64_MOVW_UABS_G2_NC => (32, None),
// Set immediate value to bits [63:48] of the source_val --> 48-bit right shift.
_g3 => (48, None),
};
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = source_sec_vaddr.value().wrapping_add(relocation_entry.addend);
let shifted_source_val = source_val >> source_value_shift;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X}, shifted_source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, shifted_source_val, source_sec_vaddr); }
let existing_target_val = u32::from_ne_bytes(
target_ref.try_into()
.map_err(|_| "BUG: R_AARCH64_MOVW_UABS_G* relocation target val was not a u32")?
);
// Set the instruction's immediate value to the shifted source value.
let immediate_field_value = shifted_source_val & (IMMEDIATE_FIELD_MASK as usize);
let new_source_val = (existing_target_val & !(IMMEDIATE_FIELD_MASK << IMMEDIATE_FIELD_SHIFT))
| ((immediate_field_value << IMMEDIATE_FIELD_SHIFT) as u32);
if verbose_log { trace!(" existing_instr: {:#X}, new_instr: {:#X}, imm val: {:#X}", existing_target_val, new_source_val, immediate_field_value); }
target_ref.copy_from_slice(&new_source_val.to_ne_bytes());
overflow_check = overflow_range.map(|range| (source_val, range));
}
R_AARCH64_ADR_PREL_PG_HI21 => {
// This is a "page" relocation, in which values used for relocation calculations
// are "page-aligned", i.e., the least-significant 12 bits are cleared.
// It is always 12 bits, regardless of the hardware's actual page size.
fn page_mask(val: usize) -> usize {
val & !0xFFF
}
// The immediate field is a total of 21 bits, split into two ranges:
// * The highest (most-significant) 19 bits occupy bits [23:5] of the instruction.
// * The lowest (least-significant) 2 bits occupy bits [30:29] of the instruction.
// See: <https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/ADRP--Form-PC-relative-address-to-4KB-page->
const IMMEDIATE_FIELD_SHIFT_HI: u8 = 5;
const IMMEDIATE_FIELD_MASK_HI: u32 = 0x7FFFF;
const IMMEDIATE_FIELD_SHIFT_LO: u8 = 29;
const IMMEDIATE_FIELD_MASK_LO: u32 = 0x3;
const SOURCE_VALUE_SHIFT: u8 = 12;
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = page_mask(source_sec_vaddr.value().wrapping_add(relocation_entry.addend))
.wrapping_sub(page_mask(target_ref.as_ptr() as usize));
let shifted_source_val = source_val_usize >> SOURCE_VALUE_SHIFT;
// now that we've shifted the source value, it's okay to truncate it into a `u32`.
let shifted_source_val = shifted_source_val as u32;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X}, shifted_source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val_usize, shifted_source_val, source_sec_vaddr); }
let existing_target_val = u32::from_ne_bytes(
target_ref.try_into()
.map_err(|_| "BUG: R_AARCH64_ADR_PREL_PG_HI21 relocation target val was not a u32")?
);
// Set the instruction's two immediate value ranges to the proper ranges of the shifted source value.
let new_source_val =
(existing_target_val & !(IMMEDIATE_FIELD_MASK_LO << IMMEDIATE_FIELD_SHIFT_LO))
| (existing_target_val & !(IMMEDIATE_FIELD_MASK_HI << IMMEDIATE_FIELD_SHIFT_HI))
| ((shifted_source_val & IMMEDIATE_FIELD_MASK_LO) << IMMEDIATE_FIELD_SHIFT_LO)
| ((shifted_source_val & IMMEDIATE_FIELD_MASK_HI) << IMMEDIATE_FIELD_SHIFT_HI);
if verbose_log { trace!(" existing_instr: {:#X}, new_instr: {:#X}", existing_target_val, new_source_val); }
target_ref.copy_from_slice(&new_source_val.to_ne_bytes());
const RANGE_32_BIT_ADR_SIGNED: Range<isize> = -TWO.pow(32) .. TWO.pow(32);
overflow_check = Some((source_val_usize, RANGE_32_BIT_ADR_SIGNED));
}
// These relocation types all use the same logic, but have different bit masks
// for the range of the immediate value (`source_val`) that gets used.
R_AARCH64_ADD_ABS_LO12_NC
| R_AARCH64_LDST8_ABS_LO12_NC
| R_AARCH64_LDST16_ABS_LO12_NC
| R_AARCH64_LDST32_ABS_LO12_NC
| R_AARCH64_LDST64_ABS_LO12_NC
| R_AARCH64_LDST128_ABS_LO12_NC => {
// The immediate field occupies 12 bits [21:10] in instructions
// that these relocation types apply to.
// See: <https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/ADD--immediate---Add--immediate-->
const IMMEDIATE_FIELD_SHIFT: u8 = 10;
const IMMEDIATE_FIELD_MASK: u32 = 0xFFF;
let source_value_shift = match relocation_entry.typ {
// Set immediate value to bits [11:4] of the source_val --> 4-bit right shift.
R_AARCH64_LDST128_ABS_LO12_NC => 4,
// Set immediate value to bits [11:3] of the source_val --> 3-bit right shift.
R_AARCH64_LDST64_ABS_LO12_NC => 3,
// Set immediate value to bits [11:2] of the source_val --> 2-bit right shift.
R_AARCH64_LDST32_ABS_LO12_NC => 2,
// Set immediate value to bits [11:1] of the source_val --> 1-bit right shift.
R_AARCH64_LDST16_ABS_LO12_NC => 1,
// Set immediate value to bits [11:0] of the source_val --> 0-bit right shift.
_both_add_and_ldst8 => 0,
};
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = source_sec_vaddr.value().wrapping_add(relocation_entry.addend) as u32;
let shifted_source_val = source_val >> source_value_shift;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X}, shifted_source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, shifted_source_val, source_sec_vaddr); }
let existing_target_val = u32::from_ne_bytes(
target_ref.try_into()
.map_err(|_| "BUG: R_AARCH64_ADD/LDST*_ABS_LO12_NC relocation target val was not a u32")?
);
// Set the instruction's immediate value to the shifted source value.
let new_source_val = (existing_target_val & !(IMMEDIATE_FIELD_MASK << IMMEDIATE_FIELD_SHIFT))
| ((shifted_source_val & IMMEDIATE_FIELD_MASK) << IMMEDIATE_FIELD_SHIFT);
if verbose_log { trace!(" existing_instr: {:#X}, new_instr: {:#X}", existing_target_val, new_source_val); }
target_ref.copy_from_slice(&new_source_val.to_ne_bytes());
overflow_check = None;
}
// These relocation types are for branch instructions, i.e., call and jump.
// The immediate field is a signed offset value.
R_AARCH64_CALL26
| R_AARCH64_JUMP26 => {
// The immediate field occupies 26 bits [25:0] in call/jump instructions.
// See: <https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/B--Branch->
const IMMEDIATE_FIELD_SHIFT: u8 = 0;
const IMMEDIATE_FIELD_MASK: u32 = 0x03FF_FFFF;
const SOURCE_VALUE_SHIFT: u8 = 2;
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val = (source_sec_vaddr.value()).wrapping_add(relocation_entry.addend).wrapping_sub(target_ref.as_ptr() as usize);
let shifted_source_val = source_val >> SOURCE_VALUE_SHIFT;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X}, shifted_source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, shifted_source_val, source_sec_vaddr); }
let existing_target_val = u32::from_ne_bytes(
target_ref.try_into()
.map_err(|_| "BUG: R_AARCH64_CALL26/JUMP26 relocation target val was not a u32")?
);
// Set the instruction's immediate value to the shifted source value.
let immediate_field_value = shifted_source_val as u32 & IMMEDIATE_FIELD_MASK;
let new_source_val = (existing_target_val & !(IMMEDIATE_FIELD_MASK << IMMEDIATE_FIELD_SHIFT))
| (immediate_field_value << IMMEDIATE_FIELD_SHIFT);
if verbose_log { trace!(" existing_instr: {:#X}, new_instr: {:#X}, imm val: {:#X}", existing_target_val, new_source_val, immediate_field_value); }
target_ref.copy_from_slice(&new_source_val.to_ne_bytes());
const RANGE_27_BIT_SIGNED: Range<isize> = -TWO.pow(27) .. TWO.pow(27);
overflow_check = Some((source_val, RANGE_27_BIT_SIGNED));
}
// These relocation types are for thread-local storage, only the "local-exec" tls model.
R_AARCH64_TLSLE_ADD_TPREL_HI12
| R_AARCH64_TLSLE_ADD_TPREL_LO12
| R_AARCH64_TLSLE_ADD_TPREL_LO12_NC => {
// The immediate field occupies 12 bits [21:10] in the ADD instruction
// that these relocation types apply to.
// See: <https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/ADD--immediate---Add--immediate-->
const IMMEDIATE_FIELD_SHIFT: u8 = 10;
const IMMEDIATE_FIELD_MASK: u32 = 0xFFF;
let (source_value_shift, overflow_range): (usize, _) = match relocation_entry.typ {
R_AARCH64_TLSLE_ADD_TPREL_HI12 => (12, Some(RANGE_24_BIT_UNSIGNED)),
R_AARCH64_TLSLE_ADD_TPREL_LO12 => (0, Some(RANGE_12_BIT_UNSIGNED)),
_lo_12_nc => (0, None),
};
let target_range = target_sec_offset .. (target_sec_offset + size_of::<u32>());
let target_ref = &mut target_sec_slice[target_range];
let source_val_usize = source_sec_vaddr.value().wrapping_add(relocation_entry.addend);
let source_val = source_val_usize as u32;
let shifted_source_val = source_val >> source_value_shift;
if verbose_log { trace!(" target_ptr: {:p}, source_val: {:#X}, shifted_source_val: {:#X} (from source_sec_vaddr {:#X})", target_ref.as_ptr(), source_val, shifted_source_val, source_sec_vaddr); }
let existing_target_val = u32::from_ne_bytes(
target_ref.try_into()
.map_err(|_| "BUG: R_AARCH64_TLSLE_ADD_TPREL_* relocation target val was not a u32")?
);
// Set the instruction's immediate value to the shifted source value.
let new_source_val = (existing_target_val & !(IMMEDIATE_FIELD_MASK << IMMEDIATE_FIELD_SHIFT))
| ((shifted_source_val & IMMEDIATE_FIELD_MASK) << IMMEDIATE_FIELD_SHIFT);
if verbose_log { trace!(" existing_instr: {:#X}, new_instr: {:#X}", existing_target_val, new_source_val); }
target_ref.copy_from_slice(&new_source_val.to_ne_bytes());
overflow_check = overflow_range.map(|range| (source_val_usize, range));
}
other => return unsupported(other),
}
// Perform the overflow check, if the relocation type requires it.
if let Some((source_val_usize, overflow_range)) = overflow_check {
let source_val_isize = source_val_usize as isize;
if overflow_range.contains(&source_val_isize) {
if verbose_log { trace!(" overflow check: {} <= {} < {}, {:#X} <= {:#X} < {:#X} --> PASS", overflow_range.start, source_val_isize, overflow_range.end, overflow_range.start, source_val_isize, overflow_range.end); }
} else {
error!("Overflow check: {:#X} <= {:#X} < {:#X} --> FAIL", overflow_range.start, source_val_isize, overflow_range.end);
return Err("Relocation failed overflow check");
}
}
Ok(())
}