1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
//! This crate provides an abstraction over multiboot2 and UEFI boot
//! information.
//!
//! It allows the kernel's initialisation to be the same, regardless of whether
//! it was booted using BIOS or UEFI.

#![feature(type_alias_impl_trait)]
#![no_std]

#[cfg(feature = "multiboot2")]
pub mod multiboot2;
#[cfg(feature = "uefi")]
pub mod uefi;

use core::iter::Iterator;
use memory_structs::{PhysicalAddress, VirtualAddress};

pub trait MemoryRegion {
    /// Returns the region's starting physical address.
    fn start(&self) -> PhysicalAddress;

    /// Returns the region's length.
    fn len(&self) -> usize;

    /// Returns whether the region is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns whether the region can be used by the frame allocator.
    fn is_usable(&self) -> bool;
}

pub trait ElfSection {
    /// Returns the section's name.
    fn name(&self) -> &str;

    /// Returns the section's starting virtual address.
    fn start(&self) -> VirtualAddress;

    /// Returns the section's length in memory, as opposed to its length in the
    /// ELF file.
    fn len(&self) -> usize;

    /// Returns whether the section is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the section's flags.
    fn flags(&self) -> ElfSectionFlags;
}

bitflags::bitflags! {
    /// ELF section flags.
    pub struct ElfSectionFlags: u64 {
        /// The section contains data that should be writable during program execution.
        const WRITABLE = 0x1;

        /// The section occupies memory during the process execution.
        const ALLOCATED = 0x2;

        /// The section contains executable machine instructions.
        const EXECUTABLE = 0x4;
    }
}

pub trait Module {
    /// Returns the module's name.
    fn name(&self) -> Result<&str, &'static str>;

    /// Returns the module's starting physical address.
    fn start(&self) -> PhysicalAddress;

    /// Returns the module's length.
    fn len(&self) -> usize;

    /// Returns whether the module is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

#[derive(Debug)]
pub struct ReservedMemoryRegion {
    pub start: PhysicalAddress,
    pub len: usize,
}


/// Information about a framebuffer's layout in memory.
#[derive(Debug)]
pub struct FramebufferInfo {
    /// The virtual address of the start of the framebuffer,
    /// if it has been mapped for us by the bootloader.
    pub virt_addr: Option<VirtualAddress>,
    /// The physical address of the start of the framebuffer.
    pub phys_addr: PhysicalAddress,
    /// The total size of the framebuffer memory in bytes.
    pub total_size_in_bytes: u64,
    /// The width in pixels (number of columns) of the framebuffer.
    /// If this is a text framebuffer, this is in units of characters.
    pub width: u32,
    /// The height in pixels (number of rows) of the framebuffer.
    /// If this is a text framebuffer, this is in units of characters.
    pub height: u32,
    /// The number of bits that each pixel occupies in memory.
    /// If this is a text framebuffer, this is the number of bits that
    /// each character occupies in memory.
    pub bits_per_pixel: u8,
    /// The number of pixels between the start of one line (row)
    /// and the start of the next line (row).
    ///
    /// This is sometimes referred to as pixels per scan line.
    ///
    /// This is required because some framebuffer implementations
    /// may have padding (empty space) at the end of each line, i.e.,
    /// each line is not contiguous in memory.
    /// For such framebuffers, you must skip those padding pixels
    /// in order to get to the start of the next line in memory.
    ///
    /// * If `stride` is equal to `width`, there are no padding pixels.
    /// * If `stride` is greater than `width`, the number of padding pixels
    ///   after the end of each line is `stride - width`.
    /// * The value of `stride` itself is *NOT* the number of padding pixels.
    ///
    /// If this is a text framebuffer, this value represents the number of
    /// characters instead of pixels, but it is typically always 0.
    pub stride: u32,
    /// The format of the framebuffer and its pixels or characters.
    pub format: FramebufferFormat,
}
impl FramebufferInfo {
    /// Returns `true` if the bootloader mapped the framebuffer and
    /// can provide its virtual address.
    ///
    /// Returns `false` if the bootloader did not map the framebuffer and
    /// can only provide its physical address.
    pub fn is_mapped(&self) -> bool {
        self.virt_addr.is_some()
    }
}

/// The format of the framebuffer, in graphical pixels or text-mode characters.
#[derive(Clone, Copy, Debug)]
pub enum FramebufferFormat {
    /// The format of a pixel is `[Pad] <Red> <Green> <Blue>`,
    /// in which `<Blue>` occupies the least significant bits.
    ///
    /// Each pixel is 8 bits (1 byte), so the size of the padding bits
    /// is `bits_per_pixel - 24`.
    RgbPixel,
    /// The format of a pixel is `[Pad] <Blue> <Green> <Red>`,
    /// in which `<Red>` occupies the least significant bits.
    ///
    /// Each pixel is 8 bits (1 byte), so the size of the padding bits
    /// is `bits_per_pixel - 24`.
    BgrPixel,
    /// The format of a pixel is `[Pad] <Gray>`,
    /// in which `Gray` is a single byte representing a grayscale value.
    ///
    /// The size of the padding bits is `bits_per_pixel - 8`.
    Grayscale,
    /// The framebuffer is an [EGA] text-mode display comprised of 16-bit characters,
    /// not pixels.
    ///
    /// [EGA]: https://en.wikipedia.org/wiki/Enhanced_Graphics_Adapter
    TextCharacter,
    /// Custom pixel format of up to 32-bit pixels.
    CustomPixel {
        /// The bit position of the least significant bit of a pixel's red component.
        red_bit_position: u8,
        /// The size of a pixel's red component, in number of bits.
        red_size_in_bits: u8,
        /// The bit position of the least significant bit of a pixel's green component.
        green_bit_position: u8,
        /// The size of a pixel's green component, in number of bits.
        green_size_in_bits: u8,
        /// The bit position of the least significant bit of a pixel's blue component.
        blue_bit_position: u8,
        /// The size of a pixel's blue component, in number of bits.
        blue_size_in_bits: u8,
    },
}

pub trait BootInformation: 'static {
    type MemoryRegion<'a>: MemoryRegion;
    type MemoryRegions<'a>: Iterator<Item = Self::MemoryRegion<'a>>;

    type ElfSection<'a>: ElfSection;
    type ElfSections<'a>: Iterator<Item = Self::ElfSection<'a>>;

    type Module<'a>: Module;
    type Modules<'a>: Iterator<Item = Self::Module<'a>>;

    type AdditionalReservedMemoryRegions: Iterator<Item = ReservedMemoryRegion>;

    /// Returns the boot information's starting virtual address.
    fn start(&self) -> Option<VirtualAddress>;
    /// Returns the boot information's length.
    fn len(&self) -> usize;

    /// Returns whether the boot information is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns memory regions describing the physical memory.
    fn memory_regions(&self) -> Result<Self::MemoryRegions<'_>, &'static str>;
    /// Returns the kernel's ELF sections.
    fn elf_sections(&self) -> Result<Self::ElfSections<'_>, &'static str>;
    /// Returns the modules found in the kernel image.
    fn modules(&self) -> Self::Modules<'_>;

    /// Returns additional reserved memory regions that aren't included in
    /// the list of regions returned by [`memory_regions`].
    fn additional_reserved_memory_regions(
        &self,
    ) -> Result<Self::AdditionalReservedMemoryRegions, &'static str>;

    /// Returns the end of the kernel's image in memory.
    fn kernel_end(&self) -> Result<VirtualAddress, &'static str>;

    /// Returns the RSDP if it was provided by the bootloader.
    fn rsdp(&self) -> Option<PhysicalAddress>;

    /// Returns the stack size in bytes.
    fn stack_size(&self) -> Result<usize, &'static str>;

    /// Returns information about the graphical framebuffer, if available.
    fn framebuffer_info(&self) -> Option<FramebufferInfo>;
}