1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
/// A generic map based on a singly-linked list data structure that is lock-free
/// and uses `AtomicPtr`s to ensure safety in the face of multithreaded access.
/// Each node remains in the same spot in memory once it is allocated,
/// and will not be reallocated,
/// which allows an external thread to maintain a reference to it safely.
///
/// Currently we do not allow nodes to be deleted, so it's only useful for certain purposes.
/// Later on, once deletions are supported, it will not be safe to maintain out-of-band references
/// to items in the data structure, rather only weak references.
///
/// New elements are inserted at the head of the list, and then the head's next pointer
/// is set up to the point to the node that was previously the head.
/// Thus, the head always points to the most recently added node.
use alloc::boxed::Box;
use core::sync::atomic::{AtomicPtr, Ordering};
#[derive(Debug)]
struct Node<K, V> where K: PartialEq {
key: K,
value: V,
next: AtomicPtr<Node<K, V>>,
}
impl<K, V> Node<K, V> where K: PartialEq {
fn new(k: K, v: V) -> Node<K, V> {
Node {
key: k,
value: v,
next: AtomicPtr::default(), // null ptr by default
}
}
}
#[derive(Debug)]
pub struct AtomicMap<K, V> where K: PartialEq {
head: AtomicPtr<Node<K, V>>,
}
impl<K, V> AtomicMap<K, V> where K: PartialEq {
/// Create a new empty AtomicMap.
///
/// Does not perform any allocation until a new node is created.
pub const fn new() -> AtomicMap<K, V> {
AtomicMap {
head: AtomicPtr::new(core::ptr::null_mut()), // null ptr
}
}
/// Adds a new key-value pair to the map.
/// If the given key is already present, its corresponding value will be overwritten.
pub fn insert(&self, key: K, value: V) -> Option<V> {
let res = self.insert_timeout(key, value, u64::max_value());
res.unwrap_or(None) // return the Option<V> in Ok(), or None if Err()
}
/// Adds a new key-value pair to the map.
/// If the given key is already present, its corresponding value will be overwritten.
/// If it fails to do so atomically after the given number of attempts, it will abort and return Err.
pub fn insert_timeout(&self, key: K, value: V, max_attempts: u64) -> Result<Option<V>, V> {
// first, we check to see if the key exists in the list already.
// if it does, simply update the corresponding value.
for pair in self.iter_mut() {
if key == *pair.0 {
let old_val = ::core::mem::replace(&mut *pair.1, value);
return Ok(Some(old_val));
}
}
// Here, the key did not exist, so we must add a new node to hold that key-value pair.
let node_ptr = Box::into_raw(Box::new(Node::new(key, value)));
let max_attempts = core::cmp::max(max_attempts, 1); // ensure we try at least once
// start the first attempt by obtaining the current head pointer
let mut orig_head_ptr = self.head.load(Ordering::Acquire);
for _attempt in 0..max_attempts {
// the new "node" will become the new head, so set the node's `next` pointer to `orig_head_ptr`
// SAFE: we know the node_ptr is valid since we just created it above.
unsafe {
(*node_ptr).next = AtomicPtr::new(orig_head_ptr);
}
// now try to atomically swap the new `node_ptr` into the current `head` ptr
match self.head.compare_exchange_weak(orig_head_ptr, node_ptr, Ordering::AcqRel, Ordering::Acquire) {
// If compare_exchange succeeds, then the `head` ptr was properly updated, i.e.,
// no other thread was interleaved and snuck in to change `head` since we last loaded it.
Ok(_old_head_ptr) => return Ok(None),
Err(changed_head_ptr) => orig_head_ptr = changed_head_ptr,
}
// Here, it didn't work, the head value wasn't updated, meaning that another process updated it before we could
// so we need to start over by reading the head ptr again and trying to swap it in again
#[cfg(test)]
println!(" attempt {}", _attempt);
}
// Here, we exceeded the number of max attempts, so we failed.
// Reclaim the Boxed `Node`, drop the Box, and return the inner data of type `V`.
// SAFE: no one has touched this node except for us when we created it above.
let reclaimed_node = unsafe {
Box::from_raw(node_ptr)
};
Err(reclaimed_node.value)
}
/// Returns a reference to the value matching the given key, if present.
/// Otherwise, returns None.
pub fn get(&self, key: &K) -> Option<&V> {
for pair in self.iter() {
if key == pair.0 {
return Some(pair.1);
}
}
None
}
/// Returns a mutable reference to the value matching the given key, if present.
/// Otherwise, returns None.
/// In order to maintain memory safety (to ensure atomicity), getting a value as mutable
/// requires `self` (this `AtomicMap` instance) to be borrowed mutably.
pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
for pair in self.iter_mut() {
if key == *pair.0 {
return Some(pair.1);
}
}
None
}
/// Returns a forward iterator through this map.
pub fn iter(&self) -> AtomicMapIter<K, V> {
AtomicMapIter {
curr: &self.head, //load(Ordering::Acquire),
// _phantom: PhantomData,
}
}
/// This should only be used internally, as we don't want outside entities
/// holding mutable references to data here.
/// Returns a forward iterator through this map,
/// allowing mutation of inner values but not keys.
/// This is safe because we do not permit deletion from this map type.
fn iter_mut(&self) -> AtomicMapIterMut<K, V> {
AtomicMapIterMut {
curr: &self.head, //load(Ordering::Acquire),
// _phantom: PhantomData,
}
}
}
impl<K, V> Drop for AtomicMap<K, V> where K: PartialEq {
fn drop(&mut self) {
let mut curr_ptr = self.head.load(Ordering::Acquire);
while !curr_ptr.is_null() {
// SAFE: checked for null above
let next_ptr = unsafe {&*curr_ptr}.next.load(Ordering::Acquire);
let _ = unsafe { Box::from_raw(curr_ptr) }; // drop the actual Node
curr_ptr = next_ptr;
}
}
}
pub struct AtomicMapIter<'a, K: PartialEq + 'a, V: 'a> {
curr: &'a AtomicPtr<Node<K, V>>,
// _phantom: PhantomData<&'a K, V>, // we don't need this with the &'a above
}
impl<'a, K: PartialEq + 'a, V: 'a> Iterator for AtomicMapIter<'a, K, V> {
type Item = (&'a K, &'a V);
fn next(&mut self) -> Option<(&'a K, &'a V)> {
let curr_ptr = self.curr.load(Ordering::Acquire);
if curr_ptr == (0 as *mut _) {
return None;
}
// SAFE: curr_ptr was checked for null
let curr_node: &Node<K, V> = unsafe { &*curr_ptr };
self.curr = &curr_node.next; // advance the iterator
Some((&curr_node.key, &curr_node.value))
}
}
pub struct AtomicMapIterMut<'a, K: PartialEq + 'a, V: 'a> {
curr: &'a AtomicPtr<Node<K, V>>,
// _phantom: PhantomData<&'a K, V>, // we don't need this with the &'a above
}
impl<'a, K: PartialEq + 'a, V: 'a> Iterator for AtomicMapIterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
let curr_ptr = self.curr.load(Ordering::Acquire);
if curr_ptr == (0 as *mut _) {
return None;
}
// SAFE: curr_ptr was checked for null
let curr_node: &mut Node<K, V> = unsafe { &mut *curr_ptr };
self.curr = &curr_node.next; // advance the iterator
Some((&curr_node.key, &mut curr_node.value))
}
}
#[test]
/// To run this test, execute: `cargo test test_map -- --nocapture`
fn test_map() {
let map: AtomicMap<&'static str, u64> = AtomicMap::new();
let should_be_none = map.get(&"yo");
println!("should_be_none = {:?}", should_be_none);
map.insert("yo", 2);
println!("after yo 2");
for i in map.iter() {
println!(" {:?}", i);
}
map.insert("hi", 45);
let old_yo = map.insert("yo", 1234);
println!("old_yo = {:?}", old_yo);
println!("after yo 4");
for i in map.iter() {
println!(" {:?}", i);
}
let should_be_45 = map.get(&"hi");
println!("should_be_45 = {:?}", should_be_45);
let should_now_be_1234 = map.get(&"yo");
println!("should_now_be_1234 = {:?}", should_now_be_1234);
}