1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
#![no_std]
#![feature(let_chains)]
use core::{fmt, sync::atomic::{AtomicU32, Ordering}, convert::TryFrom};
use derive_more::*;
use volatile::{Volatile, ReadOnly, WriteOnly};
use zerocopy::FromBytes;
use spin::Once;
use raw_cpuid::CpuId as X86CpuIdInstr;
use msr::*;
use sync_irq::IrqSafeRwLock;
use memory::{PageTable, PhysicalAddress, PteFlags, MappedPages, allocate_pages, allocate_frames_at, AllocatedFrames, BorrowedMappedPages, Mutable};
use kernel_config::time::CONFIG_TIMESLICE_PERIOD_MICROSECONDS;
use atomic_linked_list::atomic_map::AtomicMap;
use crossbeam_utils::atomic::AtomicCell;
use pit_clock_basic::pit_wait;
use bit_field::BitField;
use log::{error, info, debug, trace};
// Values for the `IA32_APIC_BASE` MSR.
const IA32_APIC_IS_BSP: u64 = 1 << 8;
const IA32_APIC_XAPIC_ENABLE: u64 = 1 << 11;
const IA32_APIC_X2APIC_ENABLE: u64 = 1 << 10;
// Value for the APIC spurious interrupt vector register.
const APIC_SW_ENABLE: u32 = 1 << 8;
/// The IRQ number reserved for spurious APIC interrupts (as recommended by OS dev wiki).
pub const APIC_SPURIOUS_INTERRUPT_IRQ: u8 = 0xFF;
// APIC timer register values.
const APIC_TIMER_DISABLE: u32 = 1 << 16;
const _APIC_TIMER_MODE_ONESHOT: u32 = 0b00 << 17;
const APIC_TIMER_MODE_PERIODIC: u32 = 0b01 << 17;
const _APIC_TIMER_MODE_TSC_DEADLINE: u32 = 0b10 << 17;
/// The IRQ number reserved for Local APIC timer interrupts in the IDT.
pub const LOCAL_APIC_LVT_IRQ: u8 = 0x22;
/// A unique identifier for a Local APIC, i.e., a CPU on x86_64.
#[derive(
Clone, Copy, Debug, Display, PartialEq, Eq, PartialOrd, Ord,
Hash, Binary, Octal, LowerHex, UpperHex,
)]
pub struct ApicId(u32);
impl ApicId {
/// Returns the inner raw value read from the Local APIC ID register.
pub fn value(self) -> u32 {
self.0
}
}
impl TryFrom<u32> for ApicId {
type Error = u32;
fn try_from(raw_apic_id: u32) -> Result<Self, Self::Error> {
let apic_id = ApicId(raw_apic_id);
match get_lapics().get(&apic_id) {
Some(_) => Ok(apic_id),
None => Err(raw_apic_id),
}
}
}
/// The interrupt chip that is currently configured on this machine.
/// The default is `InterruptChip::PIC`, but the typical case is `APIC` or `X2APIC`,
/// which will be set once those chips have been initialized.
pub static INTERRUPT_CHIP: AtomicCell<InterruptChip> = AtomicCell::new(InterruptChip::PIC);
#[derive(Clone, Copy, PartialEq, Debug)]
#[repr(u8)]
pub enum InterruptChip {
APIC,
X2APIC,
PIC,
}
// Ensure that `AtomicCell<InterruptChip>` is actually a lock-free atomic.
const _: () = assert!(AtomicCell::<InterruptChip>::is_lock_free());
/// The set of system-wide `LocalApic`s, one per CPU core.
static LOCAL_APICS: AtomicMap<ApicId, IrqSafeRwLock<LocalApic>> = AtomicMap::new();
/// The number of CPUs currently initialized in the system.
/// This must match the number of Local APICs initialized in the system.
static CPU_COUNT: AtomicU32 = AtomicU32::new(0);
/// The processor id (from the ACPI MADT table) of the bootstrap CPU.
static BSP_PROCESSOR_ID: Once<ApicId> = Once::new();
/// Returns the APIC ID of the bootstrap CPU (if known),
/// which is the first CPU to run after system power-on.
pub fn bootstrap_cpu() -> Option<ApicId> {
BSP_PROCESSOR_ID.get().cloned()
}
/// Returns true if the currently executing CPU is the bootstrap CPU,
/// i.e., the first procesor to run after system power-on.
pub fn is_bootstrap_cpu() -> bool {
rdmsr(IA32_APIC_BASE) & IA32_APIC_IS_BSP == IA32_APIC_IS_BSP
}
/// Returns true if the machine has support for x2apic
pub fn has_x2apic() -> bool {
static IS_X2APIC: Once<bool> = Once::new(); // cache the result
let res: &bool = IS_X2APIC.call_once(||
X86CpuIdInstr::new()
.get_feature_info()
.expect("Couldn't get CpuId feature info")
.has_x2apic()
);
*res // because call_once returns a reference to the cached IS_X2APIC value
}
/// Returns a reference to the list of LocalApics, one per CPU core.
pub fn get_lapics() -> &'static AtomicMap<ApicId, IrqSafeRwLock<LocalApic>> {
&LOCAL_APICS
}
/// Returns the number of CPUs (SMP cores) that exist
/// and are currently initialized on this system.
#[doc(alias("cores", "numcpus"))]
pub fn cpu_count() -> u32 {
CPU_COUNT.load(Ordering::Relaxed)
}
/// Returns the ID of the currently executing CPU.
pub fn current_cpu() -> ApicId {
ApicId(rdmsr(IA32_TSC_AUX) as u32)
}
/// Returns a reference to the LocalApic for the currently executing CPU core.
pub fn get_my_apic() -> Option<&'static IrqSafeRwLock<LocalApic>> {
LOCAL_APICS.get(¤t_cpu())
}
/// The delivery mode used when an interrupt is sent to a CPU core.
///
/// This value can be used in the following APIC registers:
/// * timer
/// * CMCI (corrected machine check error)
/// * lint0
/// * lint1
/// * performance monitoring counters
/// * thermal sensor
#[derive(Clone, Copy, Debug)]
#[repr(u32)]
pub enum LapicDeliveryMode {
/// Delivers the interrupt (as normal) to the IRQ specified in the vector field.
Fixed = 0b000,
/// Delivers an SMI interrupt to the CPU; the vector field should be 0x00.
Smi = 0b010,
/// Delivers an NMI interrupt to the CPU; the vector field is ignored.
Nmi = 0b100,
/// Delivers an INIT request to the CPU; the vector field should be 0x00.
Init = 0b101,
/// Causes the CPU to respond to the interrupts as if it originated from
/// an external interrupt controller (e.g., the PIC).
ExtInt = 0b111,
// all other values are reserved
}
impl LapicDeliveryMode {
fn as_register_value(&self) -> u32 {
(*self as u32) << 8
}
}
/// The possible values for the Local APIC Timer Divide Configuration Register.
#[derive(Clone, Copy, Debug)]
#[repr(u32)]
pub enum LapicTimerDivide {
By1 = 1,
By2 = 2,
By4 = 4,
By8 = 8,
By16 = 16,
By32 = 32,
By64 = 64,
By128 = 128,
}
impl LapicTimerDivide {
fn as_register_value(&self) -> u32 {
// Note: bit 2 is always 0.
match self {
Self::By1 => 0b1011,
Self::By2 => 0b0000,
Self::By4 => 0b0001,
Self::By8 => 0b0010,
Self::By16 => 0b0011,
Self::By32 => 0b1000,
Self::By64 => 0b1001,
Self::By128 => 0b1010,
}
}
}
/// The possible destination shorthand values for IPI ICR.
///
/// See Intel manual Figure 10-28, Vol. 3A, 10-45. (PDF page 3079)
pub enum LapicIpiDestination {
/// Send IPI to a specific APIC
One(ApicId),
/// Send IPI to my own (the current) APIC
Me,
/// Send IPI to all APICs, including myself
All,
/// Send IPI to all APICs except for myself
AllButMe,
}
impl LapicIpiDestination {
/// Convert the enum to a bitmask value to be used in the interrupt command register
pub fn as_icr_value(&self) -> u64 {
match *self {
LapicIpiDestination::One(apic_id) => {
if has_x2apic() {
(apic_id.0 as u64) << 32
} else {
(apic_id.0 as u64) << 56
}
}
LapicIpiDestination::Me => 0b01 << 18, // 0x4_0000
LapicIpiDestination::All => 0b10 << 18, // 0x8_0000
LapicIpiDestination::AllButMe => 0b11 << 18, // 0xC_0000
}
}
}
/// Determines whether this system contains an xapic or x2apic
/// and enables the Local APIC hardware in the correct mode.
pub fn init() {
let is_x2apic = has_x2apic();
debug!("is x2apic? {}. IA32_APIC_BASE (phys addr): {:X?}", is_x2apic, rdmsr(IA32_APIC_BASE));
if !is_x2apic {
// Ensure the local apic is enabled in xapic mode, otherwise we'll get a General Protection fault
unsafe { wrmsr(IA32_APIC_BASE, rdmsr(IA32_APIC_BASE) | IA32_APIC_XAPIC_ENABLE); }
}
}
/// Map the physical frames containing the APIC's MMIO registers into the given `page_table`.
fn map_apic(page_table: &mut PageTable) -> Result<MappedPages, &'static str> {
static APIC_FRAME: Once<AllocatedFrames> = Once::new();
let frame = if let Some(apic_frame) = APIC_FRAME.get() {
apic_frame
} else {
let phys_addr = PhysicalAddress::new(rdmsr(IA32_APIC_BASE) as usize)
.ok_or("APIC physical address was invalid")?;
let apic_frame = allocate_frames_at(phys_addr, 1)?;
APIC_FRAME.call_once(|| apic_frame)
};
let new_page = allocate_pages(1).ok_or("out of virtual address space!")?;
// The APIC frame is the same actual physical address across all CPU cores,
// but they're actually completely independent pieces of hardware that share one address.
// Therefore, there's no way to represent that to the Rust language or MappedPages/AllocatedFrames types,
// so we must use unsafe code, at least for now.
unsafe {
memory::Mapper::map_to_non_exclusive(
page_table,
new_page,
frame,
PteFlags::new().valid(true).writable(true).device_memory(true),
)
}
}
/// A structure that offers access to APIC/xAPIC through its I/O registers.
///
/// Definitions are based on Intel's x86 Manual Vol 3a, Table 10-1.
/// [Link to the manual](https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.pdf).
#[derive(FromBytes)]
#[repr(C)]
pub struct ApicRegisters {
_padding0: [u32; 8],
/// This Local APIC's ID.
///
/// Some processors (e.g., Intel ones prior to Nehalem) allow writing to the ID register,
/// but we define it as read-only for wider compatibility and because we have no reason
/// to write to it. See section 10.4.6 of Intel SDM.
/// Only the top 8 bits are relevant, so bit shift it to the right by 24 bits to get the actual ID.
pub lapic_id: ReadOnly<u32>, // 0x20
_padding1: [u32; 3],
pub lapic_version: ReadOnly<u32>, // 0x30
_padding2: [u32; 3 + 4*4],
pub task_priority: Volatile<u32>, // 0x80
_padding3: [u32; 3],
pub arbitration_priority: ReadOnly<u32>, // 0x90
_padding4: [u32; 3],
pub processor_priority: ReadOnly<u32>, // 0xA0
_padding5: [u32; 3],
pub eoi: WriteOnly<u32>, // 0xB0
_padding6: [u32; 3],
pub remote_read: ReadOnly<u32>, // 0xC0
_padding7: [u32; 3],
pub logical_destination: Volatile<u32>, // 0xD0
_padding8: [u32; 3],
pub destination_format: Volatile<u32>, // 0xE0
_padding9: [u32; 3],
pub spurious_interrupt_vector: Volatile<u32>, // 0xF0
_padding10: [u32; 3],
pub in_service_registers: RegisterArray, // 0x100
pub trigger_mode_registers: RegisterArray, // 0x180
pub interrupt_request_registers: RegisterArray, // 0x200
pub error_status: ReadOnly<u32>, // 0x280
_padding11: [u32; 3 + 6*4],
pub lvt_cmci: Volatile<u32>, // 0x2F0
_padding12: [u32; 3],
pub interrupt_command_low: Volatile<u32>, // 0x300
_padding13: [u32; 3],
pub interrupt_command_high: Volatile<u32>, // 0x310
_padding14: [u32; 3],
pub lvt_timer: Volatile<u32>, // 0x320
_padding15: [u32; 3],
pub lvt_thermal: Volatile<u32>, // 0x330
_padding16: [u32; 3],
pub lvt_perf_monitor: Volatile<u32>, // 0x340
_padding17: [u32; 3],
pub lvt_lint0: Volatile<u32>, // 0x350
_padding18: [u32; 3],
pub lvt_lint1: Volatile<u32>, // 0x360
_padding19: [u32; 3],
pub lvt_error: Volatile<u32>, // 0x370
_padding20: [u32; 3],
pub timer_initial_count: Volatile<u32>, // 0x380
_padding21: [u32; 3],
pub timer_current_count: ReadOnly<u32>, // 0x390
_padding22: [u32; 3 + 4*4],
pub timer_divide: Volatile<u32>, // 0x3E0
_padding23: [u32; 3 + 4],
// ends at 0x400
}
const _: () = assert!(core::mem::size_of::<ApicRegisters>() == 0x400);
#[derive(FromBytes)]
#[repr(C)]
pub struct RegisterArray {
reg0: ReadOnly<u32>,
_padding0: [u32; 3],
reg1: ReadOnly<u32>,
_padding1: [u32; 3],
reg2: ReadOnly<u32>,
_padding2: [u32; 3],
reg3: ReadOnly<u32>,
_padding3: [u32; 3],
reg4: ReadOnly<u32>,
_padding4: [u32; 3],
reg5: ReadOnly<u32>,
_padding5: [u32; 3],
reg6: ReadOnly<u32>,
_padding6: [u32; 3],
reg7: ReadOnly<u32>,
_padding7: [u32; 3],
}
const _: () = assert!(core::mem::size_of::<RegisterArray>() == 8 * (4 + 12));
/// The Local APIC's vector table local interrupt pins.
#[doc(alias("lvt", "lint", "lint0", "lint1"))]
pub enum LvtLint {
Pin0,
Pin1,
}
impl LvtLint {
/// Returns the MSR used to access this LvtLint pin.
#[inline]
fn msr(&self) -> u32 {
match self {
Self::Pin0 => IA32_X2APIC_LVT_LINT0,
Self::Pin1 => IA32_X2APIC_LVT_LINT1,
}
}
}
/// The inner type of the Local APIC (xapic or x2apic)
/// used within the [`LocalApic`] struct.
enum LapicType {
X2Apic,
XApic(BorrowedMappedPages<ApicRegisters, Mutable>),
}
impl fmt::Debug for LapicType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}",
match self {
Self::X2Apic => "x2apic",
Self::XApic(_) => "xapic",
}
)
}
}
/// The possible errors that can occur in [`LocalApic::init()`].
#[derive(Debug)]
pub enum LapicInitError {
/// This CPU wasn't the BSP, as expected.
NotBSP,
/// This CPU wasn't an AP, as expected.
NotAP,
/// Invalid NMI local interrupt pin value; given by the included `u8`.
InvalidNmiLint(u8),
/// The actual APIC ID did not match the provided expected APIC ID.
UnexpectedApicID {
expected: u32,
actual: ApicId,
},
/// An error occurred while mapping the Local APIC's MMIO registers into memory.
MemoryMappingError(&'static str),
/// The Local APIC already existed (BUG), given by the included `ApicId`.
AlreadyExisted(ApicId),
}
/// This structure represents a single Local APIC in the system; there is one per CPU.
#[doc(alias = "lapic")]
pub struct LocalApic {
/// The inner lapic object that disambiguates between xapic and x2apic.
inner: LapicType,
/// The hardware-provided ID of this Local APIC.
apic_id: ApicId,
/// The processor ID of this APIC (from the `MADT` ACPI table entry).
/// This is currently not used for anything in Theseus.
processor_id: u32,
/// Whether this Local APIC is the BootStrap Processor (the first CPU to boot up).
is_bootstrap_cpu: bool,
/// The value that should be written to the APIC timer's initial count register
/// when enabling the LVT timer.
initial_timer_count: u32,
}
impl fmt::Debug for LocalApic {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("LocalApic")
.field("type", &self.inner)
.field("apic_id", &self.apic_id.0)
.field("processor_id", &self.processor_id)
.field("is_bootstrap_cpu", &self.is_bootstrap_cpu)
.finish_non_exhaustive()
}
}
impl Drop for LocalApic {
fn drop(&mut self) {
error!("Unexpected: dropping {:?}", self);
CPU_COUNT.fetch_sub(1, Ordering::Relaxed);
}
}
impl LocalApic {
/// Creates and initializes a new `LocalApic` for the current CPU core
/// and adds it to the global set of initialized local APICs.
///
/// ## Arguments
/// * `page_table`: the page table used to map the APIC MMIO registers
/// (only used for xapic, not x2apic).
/// * `processor_id`: the processor ID specified in the ACPI `Madt` table.
/// This value is currently unused in Theseus.
/// * `expected_apic_id`: the expected APIC ID as specified in the ACPI `Madt` table.
/// * If `Some`, the APIC's own ID (given by [`LocalApic::read_apic_id()`]) *must* match this value,
/// otherwise an error will be returned.
/// * If `None`, the local APIC will determine its own ID value, and no check is performed.
/// * `should_be_bsp`: whether or not this CPU is expected to be the BSP.
/// * If `true`, this CPU must be the BSP (bootstrap processor).
/// * If `false`, this CPU must *not* be the BSP -- it must be an AP.
/// * An error is returned if the above checks fail.
/// * `nmi_lint`: the local interrupt pin used for NMI. Must be `0` or `1`.
/// * `nmi_flags`: the flags used to configure the local NMI interrupt.
///
/// ## Important Usage Note
/// This MUST be invoked from each CPU itself when it is booting up, i.e.,
/// the BSP cannot invoke this for other APs.
pub fn init(
page_table: &mut PageTable,
processor_id: u32,
expected_apic_id: Option<u32>,
should_be_bsp: bool,
nmi_lint: u8,
nmi_flags: u16,
) -> Result<(), LapicInitError> {
let nmi_lint = match nmi_lint {
0 => LvtLint::Pin0,
1 => LvtLint::Pin1,
_invalid => {
error!("BUG: invalid `nmi_lint` value (must be `0` or `1`) in \
LocalApic::init(processor_id: {}, expected_apic_id: {:?}, should_be_bsp: {}, nmi_lint: {}, nmi_flags: {}",
processor_id, expected_apic_id, should_be_bsp, nmi_lint, nmi_flags
);
return Err(LapicInitError::InvalidNmiLint(nmi_lint));
}
};
// Check whether the caller's expectations about BSP vs AP were met.
let is_bootstrap_cpu = rdmsr(IA32_APIC_BASE) & IA32_APIC_IS_BSP == IA32_APIC_IS_BSP;
if should_be_bsp && !is_bootstrap_cpu {
return Err(LapicInitError::NotBSP);
}
if !should_be_bsp && is_bootstrap_cpu {
return Err(LapicInitError::NotAP);
}
// Next, before we can check other conditions, we have to enable the APIC hardware
// (which, if xapic, also requires mapping the Local APIC's MMIO registers).
let inner: LapicType;
let enable_bitmask: u64;
if has_x2apic() {
inner = LapicType::X2Apic;
enable_bitmask = IA32_APIC_XAPIC_ENABLE | IA32_APIC_X2APIC_ENABLE;
} else {
let apic_regs = map_apic(page_table)
.map_err(LapicInitError::MemoryMappingError)
.and_then(|apic_mp|
apic_mp.into_borrowed_mut(0)
.map_err(|(_mp, err)| LapicInitError::MemoryMappingError(err))
)?;
inner = LapicType::XApic(apic_regs);
enable_bitmask = IA32_APIC_XAPIC_ENABLE;
};
// Enable the xapic/x2apic hardware.
unsafe { wrmsr(IA32_APIC_BASE, rdmsr(IA32_APIC_BASE) | enable_bitmask); }
let mut lapic = LocalApic {
inner,
processor_id,
apic_id: ApicId(u32::MAX), // placeholder, is replaced below.
is_bootstrap_cpu,
initial_timer_count: 0, // set in `calibrate_lapic_timer()`
};
// Now that the APIC hardware is enabled, we can safely obtain this Local APIC's ID.
let actual_apic_id = lapic.read_apic_id();
if let Some(expected) = expected_apic_id && expected != actual_apic_id.0 {
return Err(LapicInitError::UnexpectedApicID { expected, actual: actual_apic_id });
}
lapic.apic_id = actual_apic_id;
lapic.clean_enable();
lapic.init_lvt_timer();
lapic.set_nmi(nmi_lint, nmi_flags);
info!("Initialized new CPU ({:?})", lapic);
// Theseus uses this MSR to hold each CPU's ID (which is an OS-chosen value).
unsafe { wrmsr(IA32_TSC_AUX, actual_apic_id.0 as u64); }
if is_bootstrap_cpu {
BSP_PROCESSOR_ID.call_once(|| actual_apic_id);
}
let _existing = LOCAL_APICS.insert(actual_apic_id, IrqSafeRwLock::new(lapic));
if _existing.is_some() {
return Err(LapicInitError::AlreadyExisted(actual_apic_id));
}
CPU_COUNT.fetch_add(1, Ordering::Relaxed);
Ok(())
}
/// Returns the "processor ID" of this local APIC, which is currently unused.
///
/// This value comes from the `MADT` ACPI table entry that was used
/// to boot up this CPU core.
pub fn processor_id(&self) -> u32 { self.processor_id }
/// Returns `true` if this CPU core was the BootStrap Processor (BSP),
/// i.e., the first CPU to boot and run the OS code.
///
/// There is only one BSP per system.
pub fn is_bootstrap_cpu(&self) -> bool { self.is_bootstrap_cpu }
/// Set this Local APIC to a known "clean state" and enable its spurious interrupt vector.
fn clean_enable(&mut self) {
let is_bootstrap_cpu = self.is_bootstrap_cpu;
let id = self.read_apic_id();
let version = self.version();
match &mut self.inner {
LapicType::X2Apic => {
info!("LAPIC x2 ID {:#x}, version: {:#x}, is_bootstrap_cpu: {}", id, version, is_bootstrap_cpu);
if is_bootstrap_cpu {
INTERRUPT_CHIP.store(InterruptChip::X2APIC);
}
// Init x2APIC to a known clean state.
// Note: in x2apic, there is no DFR reg because only cluster mode is enabled;
// there is no flat logical mode, and the IA32_X2APIC_LDR is read-only.
let ldr = rdmsr(IA32_X2APIC_LDR);
let cluster_id = (ldr >> 16) & 0xFFFF; // highest 16 bits
let logical_id = ldr & 0xFFFF; // lowest 16 bits
info!("x2LAPIC ID {:#x}, version {:#X}, (cluster {:#X} logical {:#X}), is_bootstrap_cpu: {}",
id, version, cluster_id, logical_id, is_bootstrap_cpu
);
// NOTE: we're not yet using logical or cluster mode APIC addressing, only physical APIC addressing.
unsafe {
wrmsr(IA32_X2APIC_LVT_TIMER, APIC_TIMER_DISABLE as u64);
wrmsr(IA32_X2APIC_LVT_PMI, LapicDeliveryMode::Nmi.as_register_value() as u64);
wrmsr(IA32_X2APIC_LVT_LINT0, APIC_TIMER_DISABLE as u64);
wrmsr(IA32_X2APIC_LVT_LINT1, APIC_TIMER_DISABLE as u64);
wrmsr(IA32_X2APIC_TPR, 0);
// set bit 8 to start receiving interrupts (still need to "sti")
wrmsr(IA32_X2APIC_SIVR, (APIC_SPURIOUS_INTERRUPT_IRQ as u32 | APIC_SW_ENABLE) as u64);
}
}
LapicType::XApic(regs) => {
info!("LAPIC ID {:#x}, version: {:#x}, is_bootstrap_cpu: {}", id, version, is_bootstrap_cpu);
if is_bootstrap_cpu {
INTERRUPT_CHIP.store(InterruptChip::APIC);
}
// Init xAPIC to a clean known state.
// See <http://wiki.osdev.org/APIC#Logical_Destination_Mode>
regs.destination_format.write(0xFFFF_FFFF);
regs.lvt_timer.write(APIC_TIMER_DISABLE);
regs.lvt_perf_monitor.write(LapicDeliveryMode::Nmi.as_register_value());
regs.lvt_lint0.write(APIC_TIMER_DISABLE);
regs.lvt_lint1.write(APIC_TIMER_DISABLE);
regs.task_priority.write(0);
// set bit 8 to allow receiving interrupts (still need to "sti")
regs.spurious_interrupt_vector.write(APIC_SPURIOUS_INTERRUPT_IRQ as u32 | APIC_SW_ENABLE);
}
}
}
/// Returns the number of APIC ticks that occurred during the given number of `microseconds`.
///
/// The number of ticks must be a `u32` due to the size of the APIC timer count register.
fn calibrate_lapic_timer(&mut self, microseconds: u32) -> u32 {
// Start with the max counter value, since we're counting down
const INITIAL_COUNT: u32 = 0xFFFF_FFFF;
let end_count = match &mut self.inner {
LapicType::X2Apic => {
unsafe {
wrmsr(IA32_X2APIC_DIV_CONF, LapicTimerDivide::By16.as_register_value() as u64);
wrmsr(IA32_X2APIC_INIT_COUNT, INITIAL_COUNT as u64);
}
// wait for the given period using the PIT clock
pit_wait(microseconds).unwrap();
unsafe { wrmsr(IA32_X2APIC_LVT_TIMER, APIC_TIMER_DISABLE as u64); } // stop apic timer
rdmsr(IA32_X2APIC_CUR_COUNT) as u32
}
LapicType::XApic(regs) => {
regs.timer_divide.write(LapicTimerDivide::By16.as_register_value());
regs.timer_initial_count.write(INITIAL_COUNT);
// wait for the given period using the PIT clock
pit_wait(microseconds).unwrap();
regs.lvt_timer.write(APIC_TIMER_DISABLE); // stop apic timer
regs.timer_current_count.read()
}
};
INITIAL_COUNT - end_count
}
/// After this lapic has been enabled, initialize its LVT timer.
fn init_lvt_timer(&mut self) {
let apic_period = if cfg!(apic_timer_fixed) {
info!("apic_timer_fixed config: overriding LocalAPIC LVT timer period to {}", 1000000);
1000000 // for bochs, which doesn't do apic periods right
} else {
self.calibrate_lapic_timer(CONFIG_TIMESLICE_PERIOD_MICROSECONDS)
};
trace!("LocalApic {}, timer period count: {} ({:#X})", self.apic_id, apic_period, apic_period);
self.initial_timer_count = apic_period;
match &mut self.inner {
LapicType::X2Apic => unsafe {
wrmsr(IA32_X2APIC_DIV_CONF, LapicTimerDivide::By16.as_register_value() as u64);
// map X2APIC timer to the `LOCAL_APIC_LVT_IRQ` interrupt handler in the IDT
wrmsr(IA32_X2APIC_LVT_TIMER, LOCAL_APIC_LVT_IRQ as u64 | APIC_TIMER_MODE_PERIODIC as u64);
wrmsr(IA32_X2APIC_INIT_COUNT, apic_period as u64);
wrmsr(IA32_X2APIC_LVT_THERMAL, 0);
wrmsr(IA32_X2APIC_ESR, 0);
// os dev wiki guys say that setting this again as a last step helps on some strange hardware.
wrmsr(IA32_X2APIC_DIV_CONF, LapicTimerDivide::By16.as_register_value() as u64);
}
LapicType::XApic(regs) => {
regs.timer_divide.write(LapicTimerDivide::By16.as_register_value());
// map APIC timer to an interrupt handler in the IDT
regs.lvt_timer.write(LOCAL_APIC_LVT_IRQ as u32 | APIC_TIMER_MODE_PERIODIC);
regs.timer_initial_count.write(apic_period);
regs.lvt_thermal.write(0);
regs.lvt_error.write(0);
// os dev wiki guys say that setting this again as a last step helps on some strange hardware.
regs.timer_divide.write(LapicTimerDivide::By16.as_register_value());
}
}
}
/// Enable (unmask) or disable (mask) the LVT timer interrupt on this lapic.
pub fn enable_lvt_timer(&mut self, enable: bool) {
// From section 10.5.4 of Intel SDM:
// Changing the mode of the APIC timer (from one-shot to periodic or vice versa)
// by writing to the timer LVT entry does not start the timer.
// To start the timer, it is necessary to write to the initial-count register.
//
// Thus, when enabling the timer, we must immeditely write the initial count again.
if enable {
let timer_enable = LOCAL_APIC_LVT_IRQ as u32 | APIC_TIMER_MODE_PERIODIC;
match &mut self.inner {
LapicType::X2Apic => unsafe {
wrmsr(IA32_X2APIC_LVT_TIMER, timer_enable as u64);
wrmsr(IA32_X2APIC_INIT_COUNT, self.initial_timer_count as u64);
}
LapicType::XApic(regs) => {
regs.lvt_timer.write(timer_enable);
regs.timer_initial_count.write(self.initial_timer_count);
}
}
} else {
let timer_disable = APIC_TIMER_DISABLE;
match &mut self.inner {
LapicType::X2Apic => unsafe {
wrmsr(IA32_X2APIC_LVT_TIMER, timer_disable as u64);
}
LapicType::XApic(regs) => {
regs.lvt_timer.write(timer_disable);
}
}
}
}
/// Returns the ID of this Local APIC (fast).
///
/// Unlike [`LocalApic::read_apic_id()`], this does not read any hardware registers.
pub fn apic_id(&self) -> ApicId { self.apic_id }
/// Reads the hardware-provided ID of this Local APIC from its registers (slow).
///
/// The semantics of this are defined in section 10.4.6 of the Intel SDM.
pub fn read_apic_id(&self) -> ApicId {
match &self.inner {
LapicType::X2Apic => ApicId(rdmsr(IA32_X2APIC_APICID) as u32),
LapicType::XApic(regs) => {
let raw = regs.lapic_id.read();
ApicId(raw >> 24)
}
}
}
/// Returns the version of this lapic.
pub fn version(&self) -> u32 {
match &self.inner {
LapicType::X2Apic => (rdmsr(IA32_X2APIC_VERSION) & 0xFFFF_FFFF) as u32,
LapicType::XApic(regs) => regs.lapic_version.read()
}
}
/// Returns the value of this lapic's error register.
pub fn error(&self) -> u32 {
let raw = match &self.inner {
LapicType::X2Apic => (rdmsr(IA32_X2APIC_ESR) & 0xFFFF_FFFF) as u32,
LapicType::XApic(regs) => regs.error_status.read(),
};
raw & 0x0000_00F0
}
/// Clears/resets this lapic's error register.
pub fn clear_error(&mut self) {
match &mut self.inner {
LapicType::X2Apic => unsafe { wrmsr(IA32_X2APIC_ESR, 0) },
LapicType::XApic(_regs) => {
// a no-op, since apic/xapic cannot write to the error status register
}
}
}
/// Reads the current value of this lapic's Interrupt Control Register.
pub fn icr(&self) -> u64 {
match &self.inner {
LapicType::X2Apic => rdmsr(IA32_X2APIC_ICR),
LapicType::XApic(regs) => {
let high = regs.interrupt_command_high.read();
let low = regs.interrupt_command_low.read();
((high as u64) << 32) | (low as u64)
}
}
}
/// Writes `value` to this lapic's Interrupt Control Register.
pub fn set_icr(&mut self, value: u64) {
match &mut self.inner {
LapicType::X2Apic => unsafe { wrmsr(IA32_X2APIC_ICR, value) },
LapicType::XApic(regs) => {
const ICR_DELIVERY_STATUS: u32 = 1 << 12;
while regs.interrupt_command_low.read() & ICR_DELIVERY_STATUS == ICR_DELIVERY_STATUS {} // wait until ready
let high = (value >> 32) as u32;
regs.interrupt_command_high.write(high); // sets part of ICR register, but doesn't yet issue the IPI
let low = value as u32;
regs.interrupt_command_low.write(low); // this actually issues the IPI
while regs.interrupt_command_low.read() & ICR_DELIVERY_STATUS == ICR_DELIVERY_STATUS {} // wait until finished
}
}
}
/// Send an IPI to the cores specified by the given destination
pub fn send_ipi(&mut self, irq: u8, destination: LapicIpiDestination) {
const NORMAL_IPI_ICR: u64 = 0x4000;
let dest = destination.as_icr_value();
let icr = NORMAL_IPI_ICR | (irq as u64) | dest;
// trace!("send_ipi(): setting icr value to {:#X}", icr);
self.set_icr(icr);
}
/// Send a NMI IPI to the cores specified by the given destination
pub fn send_nmi_ipi(&mut self, destination: LapicIpiDestination) {
const NORMAL_IPI_ICR: u64 = 0x4000;
const NMI_DELIVERY_MODE: u64 = 0b100 << 8;
let dest = destination.as_icr_value();
let icr = NORMAL_IPI_ICR | NMI_DELIVERY_MODE | dest;
// trace!("send_ipi(): setting icr value to {:#X}", icr);
self.set_icr(icr);
}
/// Send an End Of Interrupt (EOI) signal to this local APIC,
/// which indicates that the calling interrupt handler has finished handling the current interrupt.
pub fn eoi(&mut self) {
// 0 is the only valid value to write to the EOI register/msr, others cause General Protection Fault
match &mut self.inner {
LapicType::X2Apic => unsafe { wrmsr(IA32_X2APIC_EOI, 0) },
LapicType::XApic(regs) => regs.eoi.write(0),
}
}
/// Set the NonMaskableInterrupt redirect for this LocalApic.
///
/// Argument `lint` can be either 0 or 1, since each local APIC has two LVT LINTs
/// (Local Vector Table Local INTerrupts)
pub fn set_nmi(&mut self, lint: LvtLint, flags: u16) {
let value = (flags << 12) as u32 | LapicDeliveryMode::Nmi.as_register_value();
match &mut self.inner {
LapicType::X2Apic => unsafe { wrmsr(lint.msr(), value as u64) },
LapicType::XApic(regs) => match lint {
LvtLint::Pin0 => regs.lvt_lint0.write(value),
LvtLint::Pin1 => regs.lvt_lint1.write(value),
}
}
}
/// Returns the values of the 8 in-service registers for this APIC,
/// which is a series of bitmasks that shows which interrupt lines are currently being serviced.
pub fn get_isr(&self) -> [u32; 8] {
match &self.inner {
LapicType::X2Apic => [
rdmsr(IA32_X2APIC_ISR0) as u32,
rdmsr(IA32_X2APIC_ISR1) as u32,
rdmsr(IA32_X2APIC_ISR2) as u32,
rdmsr(IA32_X2APIC_ISR3) as u32,
rdmsr(IA32_X2APIC_ISR4) as u32,
rdmsr(IA32_X2APIC_ISR5) as u32,
rdmsr(IA32_X2APIC_ISR6) as u32,
rdmsr(IA32_X2APIC_ISR7) as u32,
],
LapicType::XApic(regs) => [
regs.in_service_registers.reg0.read(),
regs.in_service_registers.reg1.read(),
regs.in_service_registers.reg2.read(),
regs.in_service_registers.reg3.read(),
regs.in_service_registers.reg4.read(),
regs.in_service_registers.reg5.read(),
regs.in_service_registers.reg6.read(),
regs.in_service_registers.reg7.read(),
]
}
}
/// Returns the values of the 8 request registers for this APIC,
/// which is a series of bitmasks that shows which interrupt lines are currently raised,
/// but not yet being serviced.
pub fn get_irr(&self) -> [u32; 8] {
match &self.inner {
LapicType::X2Apic => [
rdmsr(IA32_X2APIC_IRR0) as u32,
rdmsr(IA32_X2APIC_IRR1) as u32,
rdmsr(IA32_X2APIC_IRR2) as u32,
rdmsr(IA32_X2APIC_IRR3) as u32,
rdmsr(IA32_X2APIC_IRR4) as u32,
rdmsr(IA32_X2APIC_IRR5) as u32,
rdmsr(IA32_X2APIC_IRR6) as u32,
rdmsr(IA32_X2APIC_IRR7) as u32,
],
LapicType::XApic(regs) => [
regs.interrupt_request_registers.reg0.read(),
regs.interrupt_request_registers.reg1.read(),
regs.interrupt_request_registers.reg2.read(),
regs.interrupt_request_registers.reg3.read(),
regs.interrupt_request_registers.reg4.read(),
regs.interrupt_request_registers.reg5.read(),
regs.interrupt_request_registers.reg6.read(),
regs.interrupt_request_registers.reg7.read(),
]
}
}
/// Clears the interrupt mask bit in the apic performance monitor register.
pub fn clear_pmi_mask(&mut self) {
// The 16th bit is set to 1 whenever a performance monitoring interrupt occurs.
// It needs to be reset for another interrupt to occur.
const INT_MASK_BIT: u8 = 16;
match &mut self.inner {
LapicType::X2Apic => {
let mut value = rdmsr(IA32_X2APIC_LVT_PMI);
value.set_bit(INT_MASK_BIT, false);
unsafe { wrmsr(IA32_X2APIC_LVT_PMI, value) };
}
LapicType::XApic(regs) => {
let mut value = regs.lvt_perf_monitor.read();
value.set_bit(INT_MASK_BIT, false);
regs.lvt_perf_monitor.write(value);
}
}
}
}
// Below: temporary functions for reading MSRs that aren't yet in the `x86_64` crate.
fn rdmsr(msr: u32) -> u64 {
unsafe { x86_64::registers::model_specific::Msr::new(msr).read() }
}
unsafe fn wrmsr(msr: u32, value: u64) {
x86_64::registers::model_specific::Msr::new(msr).write(value)
}